
BeagleBoard Docs
Release 1.0.20230308-wip

BeagleBoard.org Foundation
Mar 08, 2023

Table of contents

i

ii

Chapter 1

Introduction

Welcome to the BeagleBoard documentation project. If you are looking for help with your Beagle open-hardware
development platform, you’ve found the right place!

Important: This documentation is a work in progress. For the latest versions of this documentation, be sure
to check the official release sites:

• https://docs.beagle.cc (cached with local proxies)

• https://docs.beagleboard.org (non-cached, without proxies)

For bleeding edge (development-stage) documentation:

• https://docs.beagleboard.io (straight from docs repo)

Please check out our Support page to find out how to get started, resolve issues, and engage with the developer
community. Don’t forget that this is an open-source project! Your contributions are welcome. Learn about how
to contribute to the BeagleBoard documentation project and any of the many open-source Beagle projects
ongoing on our Contribution page.

Warning: Make sure you thoroughly read and agree with our Terms & Conditions which covers warnings,
restrictions, disclaimers, and warranty for all of our boards. Use of either the boards or the design materials
constitutes agreement to the T&C including any modifications done to the hardware or software solutions
provided by beagleboard.org foundation.

1.1 Support

1.1.1 Getting started

The starting experience for all Beagles has been made to be as consistent as is possible. For any of the Beagle
Linux-based open hardware computers, visit Getting Started Guide.

Getting Started Guide

Beagles are tiny computers ideal for learning and prototyping with electronics. Read the step-by-step getting
started tutorial below to begin developing with your Beagle in minutes.

1

https://docs.beagle.cc
https://docs.beagleboard.org
https://docs.beagleboard.io
https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230308-wip

Update board with latest software This step may or may not be necessary, depending on how old a
software image you already have, but executing this step, the longest step, will ensure the rest will go as
smooth as possible.

Download the latest software image Download the latest software image from beagleboard.org distros
page. The “IoT” images provide more free disk space if you don’t need to use a graphical user interface (GUI).

Note: Due to sizing necessities, this download may take 30 minutes or more.

The Debian/Ubuntu distribution is provided for the boards. The file you download will have an .img.xz extension.
This is a compressed sector-by-sector image of the SD card.

Install SD card programming utility Download and install balenaEtcher.

2 Chapter 1. Introduction

https://www.beagleboard.org/distros
https://www.balena.io/etcher/

BeagleBoard Docs, Release 1.0.20230308-wip

Connect SD card to your computer Use your computer’s SD slot or a USB adapter to connect the SD card
to your computer.

Write the image to your SD card Use Etcher to write the image to your SD card. Etcher will transparently
decompress the image on-the-fly before writing it to the SD card.

Eject the SD card Eject the newly programmed SD card.

Boot your board off of the SD card Insert SD card into your (powered-down) board, hold down the
USER/BOOT button and apply power, either by the USB cable or 5V adapter.

If using an original BeagleBone or PocketBeagle, you are done.

Note: If using BeagleBone Black, BeagleBone Blue, BeagleBone AI, BeagleBone AI-64, BeaglePlay or other
board with on-board eMMC flash and you desire to write the image to your on-board eMMC, you’ll need to

1.1. Support 3

BeagleBoard Docs, Release 1.0.20230308-wip

follow the instructions at http://elinux.org/Beagleboard:BeagleBoneBlack_Debian#Flashing_eMMC. When the
flashing is complete, all 4 USRx LEDs will be steady off and possibly power down the board upon completion.
This can take up to 45 minutes. Power-down your board, remove the SD card and apply power again to finish.

Start your Beagle If any step fails, it is recommended to update to the latest software image using the
instructions above.

Power and boot Most Beagles can be powered via a USB cable, providing a convenient way to provide both
power to your Beagle and connectivity to your computer. Be sure the cable is of good quality and your source
can provide enough power.

Alternatively, your Beagle may have a barrel jack which can take power from a wall adapter. Checkout Power
supplies to get the correct adapter for your Beagle.

Danger: Make sure to use only a 5V center positive adapter for all Beagles except BeagleBone Blue and
BeagleBoard-X15 (12V).

If you are using your Beagle with an SD (microSD) card, make sure it is inserted ahead of providing power. Most
Beagles include programmed on-board flash and therefore do not require an SD card to be inserted.

You’ll see the power (PWR or ON) LED lit steadily. Within a minute or so, you should see the other LEDs blinking
in their default configurations. Consult your Boards documentation to locate these LEDs.

• USR0 is typically configured at boot to blink in a heartbeat pattern.

• USR1 is typically configured at boot to light during SD (microSD) card accesses.

• USR2 is typically configured at boot to light during CPU activity.

• USR3 is typically configured at boot to light during eMMC accesses.

• USR4/WIFI is typically configured at boot to light with WiFi (client) network association (Only on boards
with built-in WiFi or M.2).

Enable a network connection If connected via USB, a network adapter should show up on your computer.
Your Beagle should be running a DHCP server that will provide your computer with an IP address of either
192.168.7.1 or 192.168.6.1, depending on the type of USB network adapter supported by your computer’s
operating system. Your Beagle will reserve 192.168.7.2 or 192.168.6.2 for itself.

If your Beagle includes WiFi, an access point called “BeagleBone-XXXX” where “XXXX” varies between boards.
The access point password defaults to “BeagleBone”. Your Beagle should be running a DHCP server that will
provide your computer with an IP address in the 192.168.8.x range and reserve 192.168.8.1 for itself.

If your Beagle is connected to your local area network (LAN) via either Ethernet or WiFi, it will utilize mDNS
to broadcast itself to your computer. If your computer supports mDNS, you should see your Beagle as bea-
glebone.local. Non-BeagleBone boards will utilize alternate names. Multiple BeagleBone boards on the same
network will add a suffix such as beaglebone-2.local.

Browse to your Beagle A web server with an Visual Studio Code (IDE) should be running on your Beagle.
Point your browser to http://192.168.7.2:3000 to begin development.

4 Chapter 1. Introduction

http://elinux.org/Beagleboard:BeagleBoneBlack_Debian#Flashing_eMMC
https://www.beagleboard.org/distros
https://en.wikipedia.org/wiki/Secure_Digital
https://en.wikipedia.org/wiki/Multicast_DNS

BeagleBoard Docs, Release 1.0.20230308-wip

Note: Use either Firefox or Chrome (Internet Explorer will NOT work), browse to the web server running on
your board. It will load a presentation showing you the capabilities of the board. Use the arrow keys on your
keyboard to navigate the presentation.

The below table summarizes the typical addresses.

Link Connection type Operating System(s)
http://192.168.7.2 USB Windows
http://192.168.6.2 USB Mac OS X, Linux
http://192.168.8.1 WiFi all
http://beaglebone.local all mDNS enabled
http://beaglebone-2.local all mDNS enabled

Troubleshooting Do not use Internet Explorer.

Virtual machines are not recommended when using the direct USB connection. It is recommended you use
only network connections to your board if you are using a virtual machine.

When using ‘ssh’ with the provided image, the username is ‘debian’ and the password is ‘temppwd’.

With the latest images, it should no longer be necessary to install drivers for your operating system to give you
network-over-USB access to your Beagle. In case you are running an older image, an older operating system
or need additional drivers for serial access to older boards, links to the old drivers are below.

Operating system USB Driver Comments
Windows (64-bit) 64-bit installer If in doubt, try the 64-bit installer first.
Windows (32-bit) 32-bit installer
Mac OS X Network Serial Install both sets of drivers.
Linux mkudevrules.sh Driver installation isn’t required, but you might find a few udev rules helpful.

Note: For Windows (64-bit):

1. Windows Driver Certification warning may pop up two or three times. Click “Ignore”, “Install” or “Run”.

2. To check if you’re running 32 or 64-bit Windows see this.

1.1. Support 5

https://www.mozilla.org/firefox
https://www.google.com/chrome
http://192.168.7.2
http://192.168.6.2
http://192.168.8.1
http://beaglebone.local
http://beaglebone-2.local
https://beagleboard.org/static/Drivers/Windows/BONE_D64.exe
https://beagleboard.org/static/Drivers/Windows/BONE_DRV.exe
https://beagleboard.org/static/Drivers/MacOSX/FTDI/EnergiaFTDIDrivers2.2.18.pkg
https://beagleboard.org/static/Drivers/Linux/FTDI/mkudevrule.sh
https://support.microsoft.com/en-us/topic/determine-whether-your-computer-is-running-a-32-bit-version-or-64-bit-version-of-the-windows-operating-system-1b03ca69-ac5e-4b04-827b-c0c47145944b

BeagleBoard Docs, Release 1.0.20230308-wip

3. On systems without the latest service release, you may get an error (0xc000007b). In that
case, please perform the following and retry: https://answers.microsoft.com/en-us/windows/forum/all/
windows-10-error-code-0xc000007b/02b74e7d-ce19-4ba4-90f0-e16e8d911866

4. You may need to reboot Windows.

5. These drivers have been tested to work up to Windows 10

Additional FTDI USB to serial/JTAG information and drivers are available from https://www.ftdichip.com/Drivers/
VCP.htm

Additional USB to virtual Ethernet information and drivers are available from http://www.linux-usb.org/gadget/
and https://joshuawise.com/horndis

Visit https://docs.beagleboard.org/latest/intro/support/index.html for additional debugging tips.

Hardware documentation Be sure to check check the latest hardware documentation for your board
at https://docs.beagleboard.org. Detailed design materials for various boards can be found at https://git.
beagleboard.org/explore/projects/topics/boards.

Books For a complete list of books on BeagleBone, see beagleboard.org/books.

Bad to the Bone

Perfect for high-school seniors or freshman univerisity level text, consider using “Bad to the Bone”

BeagleBone Cookbook

A lighter treatment suitable for a bit broader audience without the backgrounders on programming and elec-
tronics, consider “BeagleBone Cookbook”

Exploring BeagleBone and Embedded Linux Primer

To take things to the next level of detail, consider “Exploring BeagleBone” which can be considered the missing
software manual and utilize “Embedded Linux Primer” as a companion textbook to provide a strong base on
embedded Linux suitable for working with any hardware that will run Linux.

1.1.2 Getting support

BeagleBoard.org products and open hardware designs are supported via the on-line community resources. We
are very confident in our community’s ability to provide useful answers in a timely manner. If you don’t get
a productive response within 24 hours, please escalate issues to Jason Kridner (contact info available on the
About Page). In case it is needed, Jason will help escalate issues to suppliers, manufacturers or others. Be sure
to provide a link to your questions on the community forums as answers will be provided there.

Be sure to ask smart questions that provide the following:

• What are you trying to accomplish?

• What did you find when researching how to accomplish it?

• What are the detailed results of what you tried?

• How did these results differ from what you expected?

• What would you consider to be a success?

Important: Remember that community developers are volunteering their expertise. Respect developers
time and expertise and they might be happy to share with you. If you want paid support, there are Consulting
and other resources options for that.

6 Chapter 1. Introduction

https://answers.microsoft.com/en-us/windows/forum/all/windows-10-error-code-0xc000007b/02b74e7d-ce19-4ba4-90f0-e16e8d911866
https://answers.microsoft.com/en-us/windows/forum/all/windows-10-error-code-0xc000007b/02b74e7d-ce19-4ba4-90f0-e16e8d911866
https://www.ftdichip.com/Drivers/VCP.htm
https://www.ftdichip.com/Drivers/VCP.htm
http://www.linux-usb.org/gadget/
https://joshuawise.com/horndis
https://docs.beagleboard.org/latest/intro/support/index.html
https://docs.beagleboard.org
https://git.beagleboard.org/explore/projects/topics/boards
https://git.beagleboard.org/explore/projects/topics/boards
https://beagleboard.org/books
https://bbb.io/bad-to-the-bone
https://bbb.io/cookbook
https://bbb.io/ebb
https://bbb.io/elp
https://www.oshwa.org/definition/
https://beagleboard.org/about
https://forum.beagleboard.org
http://www.catb.org/~esr/faqs/smart-questions.html

BeagleBoard Docs, Release 1.0.20230308-wip

Diagnostic tools

Best to be prepared with good diagnostic information to aide with support.

• Output of beagle-version script needed for support requests

• Beagle Tester source

Tip: For debugging purposes you can either share the beagle-version.txt file you just down-
loaded using the steps shown in pictures above Or you can just paste the terminal output of sudo
beagle-version to https://pastebin.com/ and send us the link.

1.1. Support 7

https://git.beagleboard.org/jkridner/beagle-tester
https://pastebin.com/

BeagleBoard Docs, Release 1.0.20230308-wip

Community resources

Please execute the board diagnostics, review the hardware documentation, and consult the mailing list and
IRC channel for support. BeagleBoard.org is a “community” project with free support only given to those who
are willing to discussing their issues openly for the benefit of the entire community.

• Frequently Asked Questions

• Mailing List

• Live Chat

Consulting and other resources

Need timely response or contract resources because you are building a product?

• Resources

Repairs

Repairs and replacements only provided on unmodified boards purchased via an authorized distributor within
the first 90 days. All repaired board will have their flash reset to factory contents. For repairs and replacements,
please contact support at BeagleBoard.org using the RMA form:

• RMA request

1.1.3 Understanding Your Beagle

• Beagle 101

• Hardware

• Software

• Books

– PRU Cookbook

– BeagleBone Cookbook

– Exploring BeagleBone

– Bad to the Bone

1.1.4 Working with Cape Add-on Boards

• Capes

• BeagleBone cape interface spec

• Accessories

1.2 Beagle 101

Note: This page is under construction. Most of the information here is drastically out of date.

This is a collection of articles to aide in quickly understanding how to make use of Beagles running Linux. Most
of the useful information has moved to BeagleBone Cookbook, but some articles are being built here from a
different perspective.

8 Chapter 1. Introduction

https://forum.beagleboard.org/c/faq
https://forum.beagleboard.org
https://beagleboard.org/chat
https://beagleboard.org/resources
https://www.beagleboard.org/rma
https://beagleboard.org/Support/Hardware+Support
https://beagleboard.org/Support/Software+Support
https://beagleboard.org/ebb
https://beagleboard.org/bad-to-the-bone

BeagleBoard Docs, Release 1.0.20230308-wip

Articles under construction or to be imported and updated:

• QWIIC, STEMMA and Grove Add-ons in Linux

• https://beagleboard.github.io/bone101/Support/bone101/

1.2.1 QWIIC, STEMMA and Grove Add-ons in Linux

Note: This article is under construction.

I’m creating a place for me to start taking notes on how to load drivers for I2C devices (mostly), but also other
Grove add-ons.

For simplicity sake, I’ll use these definitions

• add-on: the QWIIC, STEMMA (QT) or Grove add-on separate from your Linux computer

• device: the “smart” IC on the add-on to which we will interface from your Linux computer

• board: the Linux single board computer with the embedded interface controller you are using

• module: a kernel module that might contain the driver

Using I2C with Linux drivers

Linux has a ton of drivers for I2C devices. We just need a few parameters to load them.

Using a Linux I2C kernel driver module can be super simple, like in the below example for monitoring a digital
light sensor.

cd /dev/bone/i2c/2
echo tsl2561 0x29 > new_device
watch -n0 cat ”2-0029/iio:device0/in_illuminance0_input”

Once you issue this, your screen continuously refresh with luminance values from the add-on sensor.

In the above example, /dev/bone/i2c/2 comes from which I2C controller we are using on the board and there
are specific pins on the board where you can access it. On BeagleBone boards, there is often a symbolic link to
the controller based upon the cape expansion header pins being used. See I2C for the cape expansion header
pin assignments.

tsl2561 is the name of the driver we want to load and 0x29 is the address of the device on the I2C bus. If you
want to know about I2C device addresses, the Sparkfun I2C tutorial isn’t a bad place to start. The new_device
virtual file is documented in the Linux kernel documentation on instantiating I2C devices.

On the last line, watch is a program that will repeatedly run the command that follows. The -n0 sets the refresh
rate. The program cat will share the contents of the file 2-0029/iio:device0/in_illuminance0_input.

2-0029/iio:device0/in_illuminance0_input is not a file on a disk, but output directly from the driver. The leading
2 in 2-0029 represents the I2C controller index. The 0029 represents the device I2C address. Most small sensor
and actuator drivers will show up as Industrial I/O (IIO) devices. New IIO devices get incrementing indexes. In
this case, iio:device0 is the first IIO device driver loaded. Finally, in_illuminance0_input comes from the SYSFS
application binary interface for this type of device, a light sensor. The Linux kernel ABI documentation for
sysfs-bus-iio provides the definition of available data often provided by light sensor drivers.

What: /sys/.../iio:deviceX/in_illuminance_input
What: /sys/.../iio:deviceX/in_illuminance_raw
What: /sys/.../iio:deviceX/in_illuminanceY_input
What: /sys/.../iio:deviceX/in_illuminanceY_raw
What: /sys/.../iio:deviceX/in_illuminanceY_mean_raw
What: /sys/.../iio:deviceX/in_illuminance_ir_raw

(continues on next page)

1.2. Beagle 101 9

https://beagleboard.github.io/bone101/Support/bone101/
https://learn.sparkfun.com/tutorials/i2c
https://www.kernel.org/doc/html/v5.19/i2c/instantiating-devices.html
https://manpages.debian.org/bullseye/procps/watch.1.en.html
https://manpages.debian.org/bullseye/coreutils/cat.1.en.html
https://www.kernel.org/doc/html/v5.19/driver-api/iio/index.html
https://www.kernel.org/doc/html/v5.19/filesystems/sysfs.html
https://www.kernel.org/doc/html/v5.19/admin-guide/abi.html
https://www.kernel.org/doc/html/v5.19/admin-guide/abi-testing.html#abi-sys-iio-devicex-in-illuminance-input
https://www.kernel.org/doc/html/v5.19/admin-guide/abi-testing.html#abi-sys-iio-devicex-in-illuminance-input

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

What: /sys/.../iio:deviceX/in_illuminance_clear_raw
KernelVersion: 3.4
Contact: linux-iio@vger.kernel.org
Description:

Illuminance measurement, units after application of scale
and offset are lux.

Read further to discover how to find these bits of magic text used above.

The generic steps are fairly simple:

1. Identify driver name and address

2. Ensure driver is enabled in kernel build

3. Identify I2C signals on board and controller in Linux

4. Ensure pinmux set to I2C

5. Ensure add-on connection is good

6. Issue Linux command to load driver

7. Identify and utilize interface provided by driver

Driver name One resource that is very helpful is the list that Vaishnav put together for supporting Mikroelek-
tronika Click add-ons. This list of Click add-ons with driver information can help a lot with matching a device
to the driver name, device address, and kernel configuration setting.

Note: Documentation for your particular add-on might indicate a different device address than is configured
on Click add-ons.

I’m not aware of a trivial way of discovering the mapping that Vaishnav created outside of looking at the kernel
sources. As an example, let’s look at the Grove Digital Light Sensor add-on which is documented to utilize a
TSL2561.

Searching through the kernel sources, we can find the driver code at drivers/iio/light/tsl2563.c. There is a list
of driver names in a i2c_device_id table:

static const struct i2c_device_id tsl2563_id[] = {
{ ”tsl2560”, 0 },
{ ”tsl2561”, 1 },
{ ”tsl2562”, 2 },
{ ”tsl2563”, 3 },
{}

};

Important: Don’t miss that the driver, tsl2561 , is actually part of a a superset driver, tsl2563 . This can
make things a bit trickier to find, so you have to look within the text of the driver source, not just the filenames.

Kernel configuration

I2C signals and controller

Pinmuxing

10 Chapter 1. Introduction

https://git.beagleboard.org/beagleconnect/manifesto/-/blob/main/click_info.csv
https://wiki.seeedstudio.com/Grove-Digital_Light_Sensor/
https://elixir.bootlin.com/linux/v5.19.5/source/drivers/iio/light/tsl2563.c#L862

BeagleBoard Docs, Release 1.0.20230308-wip

Wiring

Load driver

Interface

Finding I2C add-onmodules
Note: There are some great resources out there:

• Adafruit list of I2C devices

• Sparkfun list of QWIIC devices

• Adafruit STEMMA QT introduction

Pitfalls Not all I2C devices with drivers in the Linux kernel can be loaded this way. The most common reason
is that the device driver expects an interrupt signal or other GPIO along with the I2C communication. In these
cases, a device tree overlay or driver modification may be necessary.

1.3 Contribution

Note: This section is under developmement right now.

Important: First off, thanks for taking the time to think about contributing!

Note: For donations, see BeagleBoard.org - Donate.

The BeagleBoard.org Foundation maintains source for many open source projects.

Example projects suitable for first contributions:

• BeagleBoard project documentation

• Debian image bug repository

• Debian image builder

These guidelines are mostly suggestions, not hard-set rules. Use your best judgment, and feel free to propose
changes to this document in a pull request.

1.3.1 Code of Conduct

This project and everyone participating are governed by the same code of conduct.

Note: Check out https://forum.beagleboard.org/faq as a starting place for our code of conduct.

By participating, you are expected to uphold this code. Please report unacceptable behavior to contact one of
our administrators or moderators on https://forum.beagleboard.org/about.

1.3. Contribution 11

https://learn.adafruit.com/i2c-addresses/the-list
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt/sparkfun-qwiic
https://beagleboard.org/donate
https://git.beagleboard.org/docs/docs.beagleboard.io
https://git.beagleboard.org/beagleboard/Latest-Images
https://git.beagleboard.org/beagleboard/image-builder
https://forum.beagleboard.org/faq
https://forum.beagleboard.org/about

BeagleBoard Docs, Release 1.0.20230308-wip

1.3.2 Frequently Asked Questions

Please refer to the technical and contribution frequently asked questions pages before posting any of your own
questions. Please feel encouraged to ask follow-up questions if any of the answers are not clear enough.

• Frequently asked questions contribution category on the BeagleBoard.org Forum

1.3.3 What should I know before I get started?

The more you know about Linux and contributing to upstream projects, the better, but this knowledge isn’t
strictly required. Simply reading about contributing to Linux and upstream projects can help build your vocab-
ulary in a meaningful way to help out. Learn about the skills required for Linux contributions in the Upstream
Kernel Contributions section.

The most useful thing to know is how to ask smart questions. Read about this in the Getting support section. If
you ask smart questions on the issue trackers and forum, you’ll be doing a lot to help us improve the designs
and documentation.

Upstream Kernel Contributions

Note: For detailed information on Kernel Developmement checkout the official kernel.org kernel docs.

For a person or company who wishes to submit a change to the Linux kernel, the process can sometimes be
daunting if you’re not familiar with “the system.” This text is a collection of suggestions which can help you
get started and greatly increase the chances of your change being accepted.

Note: This version is an unofficial draft and is subject to change.

Pre-requisites The following are the skills that are needed before you actually start to contribute to the linux
kernel:

• More Git!

• C-Programming

• Cross-arch Development

• Basics of embedded buses (I2C, UART, SPI, etc.)

• Device Drivers in Embedded Systems

• Device Trees

For more guidance, check out the Additional Resources.

More Git! It is highly recommended that you go through Git Usage before starting to read and follow these
guidelines. You will need to have a proper git setup on your computer in order to effectively follow these steps.

Creating your first patch When you first enter the world of Linux Kernel development from a background
in contributing over gitlab or github, the terminologies slightly change.

Your Pull Requests (PRs) now become Patches or Patch Series. You no longer just go to some website and click
on a “Create Pull Request” button. Whatever code/changes you want to add will have to be sent as patches
via emails.

As an example, let’s consider a commit to add the git section to these docs. I stage these changes first using
git add -p.

12 Chapter 1. Introduction

https://forum.beagleboard.org/c/faq
https://www.kernel.org/doc/html/latest/

BeagleBoard Docs, Release 1.0.20230308-wip

diff --git a/contribution/contribute.rst b/contribution/contribute.rst
index def100b..0af08c5 100644
--- a/contribution/contribute.rst
+++ b/contribution/contribute.rst

Then, commit the above changes.

Note: Don’t forget to make your commit message descriptive of the feature you are adding or the work that
you have done in that commit. The commit has to be self explanatory in itself. Link any references if you have
used and paste any logs to prove your code works or if there is a fix.

git commit -vs

[linux-contrib 3bc0821] contribute.rst: Add git section
1 file changed, 27 insertions(+), 1 deletion(-)

Now, let’s say we want to send this new feature to upstream kernel. You then have to create a patch file using
the following command:

git format-patch -1 HEAD

0001-contribute.rst-Add-git-section.patch

This will generate one file that is generally referred to as the patch file. This is what you will now be sending
upstream in order to get your patch merged. But wait, there are a fewmore things we need to setup for sending
a patch via e-mail. That is, of course your email!

For configuring your email ID for sending patches refer to this excellent stackoverflow thread, configure git-
send-email.

Finally, after you have configured you email properly, you can send out a patch using:

git send-email 0001-contribute.rst-Add-git-section.patch

replacing of course the above patchfile name with whatever was your own patch. This command will then ask
you To whom should the emails be sent (if anyone)? Here, you have to write the email
address of the list you want to send out the patch to.

git send-email also has command line options like --to and --cc that you can also use to add more
email addresses of whoever you want to keep in CC. Generally it is a good idea to keep yourself in CC.

C-Programming It is highly recommended that you have proficiency in C-Programming, because well the
kernel is mostly written in C! For starters, you can go through Dennis Ritchie’s C Programming book to under-
stand the language and also solve the exercises given there for getting hands on.

Cross-arch Development While working with the kernel, you’ll most likely not be compiling it on themachine
that you intend to actually boot it on. For example if you are compiling the Kernel for BeageBone Black it’s
probably not ideal for you to actually clone the entire kernel on BeagleBone Black and then compile it there.
What you’d do instead is pick a much powerful machine like a Desktop PC or laptop and then use cross arch
compilers like the arm-gcc for instance to compile the kernel for your target device.

Basics of embedded buses (I2C, UART, SPI, etc.) In the world of embedded, you often need to commu-
nicate with peripherals over very low level protocols. To name a few, I2C, UART, SPI, etc. are all serial protocols
used to communicate with a variety of devices and peripherals.

It’s recommended to understand at least the basics of each of the protocol so you know what’s actually going
on when you write for instance an I2C or SPI driver to communicate with let’s say a sensor.

1.3. Contribution 13

https://stackoverflow.com/questions/68238912/how-to-configure-and-use-git-send-email-to-work-with-gmail-to-email-patches-to
https://stackoverflow.com/questions/68238912/how-to-configure-and-use-git-send-email-to-work-with-gmail-to-email-patches-to

BeagleBoard Docs, Release 1.0.20230308-wip

Device Drivers in Embedded Systems I used the term “Drivers” in the above section, but what does it
really mean?

Why “device” drivers?

TODO

Why do we need drivers?

TODO

What do drivers look like?

TODO

Device Trees We just learned about drivers, and it’s time that once you have written a driver in the kernel,
you obviously want it to work! So how do we really tell the kernel which drivers to load? How do we, at boot
time, instruct which devices are present on the board you are booting on?

The kernel does not contain the description of the hardware, it is located in a separate binary: the device tree
blob.

What is a Device Tree?

A device tree is used to describe system hardware. A boot program loads a device tree into a client program’s
memory and passes a pointer to the device tree to the client.

A device tree is a tree data structure with nodes that describe the physical devices in a system.

Additional Resources

1. Device Trees for Dummies PDF

2. What are Device Drivers

3. Submitting your patches upstream

1.3.4 How can I contribute?

The most obvious way to contribute is using the git.beagleboard.org Gitlab server to report bugs, suggest
enhancements and providing merge requests, also called pull requests, the provide fixes to software, hardware
designs and documentation.

Reporting bugs

Suggesting enhancements

Submitting merge requests

1.3.5 Style and usage guidelines

• Git Usage

• Git commit messages

• Documentation Style Guide

14 Chapter 1. Introduction

https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://tldp.org/LDP/tlk/dd/drivers.html
https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html
https://git.beagleboard.org

BeagleBoard Docs, Release 1.0.20230308-wip

Git Usage

Note: For detailed information on Git and Gitlab checkout the official Git and GitLab help page. Also, for good
GitLab workflow you can checkout the Introduction to GitLab Flow (FREE) page.

These are (draft) general guidelines taken from BioPython project to be used for BeagleBoard development
using git. We’re still working on the finer details.

This document is meant as an outline of the way BeagleBoard projects are developed. It should include all
essential technical information as well as typical procedures and usage scenarios. It should be helpful for core
developers, potential code contributors, testers and everybody interested in BeagleBoard code.

Note: This version is an unofficial draft and is subject to change.

Relevance This page is about actually using git for tracking changes.

If you have found a problem with any BeagleBoard project, and think you know how to fix it, then we suggest
following the simple route of filing a bug and describe your fix. Ideally, you would upload a patch file showing
the differences between the latest version of BeagleBoard project (from our repository) and your modified
version. Working with the command line tools diff and patch is a very useful skill to have, and is almost a
precursor to working with a version control system.

Technicalities This section describes technical introduction into git usage including required software and
integration with GitLab. If you want to start contributing to BeagleBoard, you definitely need to install git
and learn how to obtain a branch of the BeagleBoard project you want to contribute. If you want to share your
changes easily with others, you should also sign up for a BeagleBoard GitLab account and read the correspond-
ing section of the manual. Finally, if you are engaged in one of the collaborations on experimental BeagleBoard
modules, you should look also into code review and branch merging.

Installing Git You will need to install Git on your computer. Git is available for all major operating systems.
Please use the appropriate installation method as described below.

Linux Git is now packaged in all major Linux distributions, you should find it in your package manager.

Ubuntu/Debian You can install Git from the git-core package. e.g.,

sudo apt-get install git-core

You’ll probably also want to install the following packages: gitk, git-gui, and git-doc

Redhat/Fedora/Mandriva git is also packaged in rpm-based linux distributions.

dnf install gitk

should do the trick for you in any recent fedora/mandriva or derivatives

Mac OS X Download the .dmg disk image from http://code.google.com/p/git-osx-installer/

Windows Download the official installers from Windows installers

1.3. Contribution 15

https://git.beagleboard.org/help#git-and-gitlab
https://git.beagleboard.org/help/topics/gitlab_flow.md
https://biopython.org/wiki/GitUsage
https://git.beagleboard.org/users/sign_up
http://git-scm.com/
http://code.google.com/p/git-osx-installer/
https://git-scm.com/download/win

BeagleBoard Docs, Release 1.0.20230308-wip

Testing your git installation If your installation succeeded, you should be able to run

$ git --help

in a console window to obtain information on git usage. If this fails, you should refer to git documentation for
troubleshooting.

Creating a GitLab account (Optional) Once you have Git installed on your machine, you can obtain the
code and start developing. Since the code is hosted at GitLab, however, you may wish to take advantage of
the site’s offered features by signing up for a GitLab account. While a GitLab account is completely optional
and not required for obtaining the BeagleBoard code or participating in development, a GitLab account will
enable all other BeagleBoard developers to track (and review) your changes to the code base, and will help
you track other developers’ contributions. This fosters a social, collaborative environment for the BeagleBoard
community.

If you don’t already have a GitLab account, you can create one here. Once you have created your account,
upload an SSH public key by clicking on SSH and GPG keys <https://git.beagleboard.org/-/profile/keys> after
logging in. For more information on generating and uploading an SSH public key, see this GitLab guide.

Working with the source code In order to start working with the BeagleBoard source code, you need to
obtain a local clone of our git repository. In git, this means you will in fact obtain a complete clone of our git
repository along with the full version history. Thanks to compression, this is not much bigger than a single copy
of the tree, but you need to accept a small overhead in terms of disk space.

There are, roughly speaking, two ways of getting the source code tree onto your machine: by simply “cloning”
the repository, or by “forking” the repository on GitLab. They’re not that different, in fact both will result in a
directory on your machine containing a full copy of the repository. However, if you have a GitLab account, you
can make your repository a public branch of the project. If you do so, other people will be able to easily review
your code, make their own branches from it or merge it back to the trunk.

Using branches on GitLab is the preferred way to work on new features for BeagleBoard, so it’s useful to learn
it and use it even if you think your changes are not for immediate inclusion into the main trunk of BeagleBoard.
But even if you decide not to use GitLab, you can always change this later (using the .git/config file in your
branch.) For simplicity, we describe these two possibilities separately.

Cloning BeagleBoard directly Getting a copy of the repository (called “cloning” in Git terminology) without
GitLab account is very simple:

git clone https://git.beagleboard.org/docs/docs.beagleboard.io.git

This command creates a local copy of the entire BeagleBoard repository on your machine (your own personal
copy of the official repository with its complete history). You can now make local changes and commit them
to this local copy (although we advise you to use named branches for this, and keep the main branch in sync
with the official BeagleBoard code).

If you want other people to see your changes, however, you must publish your repository to a public server
yourself (e.g. on GitLab).

Forking BeagleBoard with your GitLab account If you are logged in to GitLab, you can go to the Beagle-
Board Docs repository page:

https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main

and click on a button named ‘Fork’. This will create a fork (basically a copy) of the official BeagleBoard reposi-
tory, publicly viewable on GitLab, but listed under your personal account. It should be visible under a URL that
looks like this:

https://git.beagleboard.org/yourusername/docs.beagleboard.io/

16 Chapter 1. Introduction

https://git-scm.com/doc
https://git.beagleboard.org/users/sign_up
https://docs.gitlab.com/ee/user/ssh.html
https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main
https://git.beagleboard.org/yourusername/docs.beagleboard.io/

BeagleBoard Docs, Release 1.0.20230308-wip

Since your new BeagleBoard repository is publicly visible, it’s considered good practice to change the de-
scription and homepage fields to something meaningful (i.e. different from the ones copied from the official
repository).

If you haven’t done so already, setup an SSH key and upload it to gitlab for authentication.

Now, assuming that you have git installed on your computer, execute the following commands locally on your
machine. This “url” is given on the GitLab page for your repository (if you are logged in):

git clone https://git.beagleboard.org/yourusername/docs.beagleboard.io.git

Where yourusername, not surprisingly, stands for your GitLab username. You have just created a local copy of
the BeagleBoard Docs repository on your machine.

You may want to also link your branch with the official distribution (see below on how to keep your copy in
sync):

git remote add upstream https://git.beagleboard.org/docs/docs.beagleboard.io/

If you haven’t already done so, tell git your name and the email address you are using on GitLab (so that your
commits get matched up to your GitLab account). For example,

git config --global user.name ”David Jones” config --global user.email ”d.
↪→jones@example.com”

Making changes locally Now you can make changes to your local repository - you can do this offline, and
you can commit your changes as often as you like. In fact, you should commit as often as possible, because
smaller commits are much better to manage and document.

First of all, create a new branch to make some changes in, and switch to it:

git branch demo-branch checkout demo-branch

To check which branch you are on, use:

git branch

Let us assume you’ve made changes to the file beaglebone-black/ch01.rst Try this:

git status

So commit this change you first need to explicitly add this file to your change-set:

git add beaglebone-black/ch01.rst

and now you commit:

git commit -m ”added updates X in BeagleBone Black ch01”

Your commits in Git are local, i.e. they affect only your working branch on your computer, and not the whole
BeagleBoard tree or even your fork on GitLab. You don’t need an internet connection to commit, so you can
do it very often.

Pushing changes to GitLab If you are using GitLab, and you are working on a clone of your own branch,
you can very easily make your changes available for others.

Once you think your changes are stable and should be reviewed by others, you can push your changes back
to the GitLab server:

git push origin demo-branch

This will not work if you have cloned directly from the official BeagleBoard branch, since only the core devel-
opers will have write access to the main repository.

1.3. Contribution 17

https://docs.gitlab.com/ee/user/ssh.html

BeagleBoard Docs, Release 1.0.20230308-wip

Merging upstream changes We recommend that you don’t actually make any changes to themain branch
in your local repository (or your fork onGitLab). Instead, use named branches to do any of your own work. The
advantage of this approach it is the trivial to pull the upstream main (i.e. the official BeagleBoard branch) to
your repository.

Assuming you have issued this command (you only need to do this once):

git remote add upstream https://git.beagleboard.org/docs/docs.beagleboard.io/

Then all you need to do is:

git checkout main pull upstream main

Provided you never commit any change to your localmain branch, this should always be a simple fast forward
merge without any conflicts. You can then deal with merging the upstream changes from your local main
branch into your local branches (and you can do that offline).

If you have your repository hosted online (e.g. at GitLab), then push the updated main branch there:

git push origin main

Submitting changes for inclusion in BeagleBoard If you think you changes are worth including in the
main BeagleBoard distribution, then file an (enhancement) bug on our bug tracker, and include a link to your
updated branch (i.e. your branch on GitLab, or another public Git server). You could also attach a patch to
the bug. If the changes are accepted, one of the BeagleBoard developers will have to check this code into our
main repository.

On GitLab itself, you can inform keepers of the main branch of your changes by sending a ‘pull request’ from
the main page of your branch. Once the file has been committed to the main branch, you may want to delete
your now redundant bug fix branch on GitLab.

If other things have happened since you began your work, it may require merging when applied to the official
repository’s main branch. In this case we might ask you to help by rebasing your work:

git fetch upstream checkout demo-branch

git rebase upstream/main

Hopefully the only changes between your branch and the official repository’s main branch are trivial and git
will handle everything automatically. If not, you would have to deal with the clashes manually. If this works,
you can update the pull request by replacing the existing (pre-rebase) branch:

git push origin demo-branch --force

If however the rebase does not go smoothly, give up with the following command (and hopefully the Beagle-
Board developers can sort out the rebase or merge for you):

git rebase --abort

Evaluating changes Since git is a fully distributed version control system, anyone can integrate changes
from other people, assuming that they are using branches derived from a common root. This is especially
useful for people working on new features who want to accept contributions from other people.

This section is going to be of particular interest for the BeagleBoard core developers, or anyone accepting
changes on a branch.

For example, suppose Jason has some interesting changes on his public repository:

https://git.beagleboard.org/jkridner/docs.beagleboard.io

You must tell git about this by creating a reference to this remote repository:

18 Chapter 1. Introduction

https://git.beagleboard.org/jkridner/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230308-wip

git remote add jkridner https://git.beagleboard.org/jkridner/BeagleBoard.git

Now we can fetch all of Jason’s public repository with one line:

git fetch jkridner

Now we can run a diff between any of our own branches and any of Jason’s branches. You can list your own
branches with:

git branch

Remember the asterisk shows which branch is currently checked out.

To list the remote branches you have setup:

git branch -r

For example, to show the difference between your main branch and Jason’s main branch:

git diff main jkridner/main

If you are both keeping your main branch in sync with the upstream BeagleBoard repository, then his main
branch won’t be very interesting. Instead, try:

git diff main jkridner/awesomebranch

You might now want to merge in (some) of Jason’s changes to a new branch on your local repository. To make
a copy of the branch (e.g. awesomebranch) in your local repository, type:

git checkout --track jkridner/awesomebranch

If Jason is adding more commits to his remote branch and you want to update your local copy, just do:

git checkout awesomebranch # if you are not already in branch awesomebranch␣
↪→pull

If you later want to remove the reference to this particular branch:

git branch -r -d jkridner/awesomebranch
Deleted remote branch jkridner/awesomebranch (#######)

Or, to delete the references to all of Jason’s branches:

git remote rm jkridner

git branch -r
upstream/main
origin/HEAD
origin/main

Alternatively, from within GitLab you can use the fork-queue to cherry pick commits from other people’s forked
branches. While this defaults to applying the changes to your current branch, you would typically do this using
a new integration branch, then fetch it to your local machine to test everything, before merging it to your main
branch.

Committing changes to main branch This section is intended for BeagleBoard developers, who are al-
lowed to commit changes to the BeagleBoard main “official” branch. It describes the typical activities, such as
merging contributed code changes both from git branches and patch files.

1.3. Contribution 19

BeagleBoard Docs, Release 1.0.20230308-wip

Prerequisites Currently, the main BeagleBoard branch is hosted on GitLab. In order to make changes to
the main branch you need a GitLab account and you need to be added as a collaborator/Maintainer to the
BeagleBoard account. This needs to be done only once. If you have a GitLab account, but you are not yet a
collaborator/Maintainer and you think you should be ask Jason to be added (this is meant for regular contribu-
tors, so in case you have only a single change to make, please consider submitting your changes through one
of developers).

Once you are a collaborator/Maintainer, you can pull BeagleBoard official branch using the private url. If you
want to make a new repository (linked to the main branch), you can just clone it:

git clone https://git.beagleboard.org/lorforlinux/docs.beagleboard.io.git

It creates a new directory “BeagleBoard” with a local copy of the official branch. It also sets the “origin” to the
GitLab copy This is the recommended way (at least for the beginning) as it minimizes the risk of accidentally
pushing changes to the official GitLab branch.

Alternatively, if you already have a working git repo (containing your branch and your own changes), you can
add a link to the official branch with the git “remote command”… but we’ll not cover that here.

In the following sections, we assume you have followed the recommended scenario and you have the following
entries in your .git/config file:

[remote ”origin”]
url = https://git.beagleboard.org/lorforlinux/docs.beagleboard.io.git

[branch ”main”]
remote = origin

Committing a patch If you are committing from a patch, it’s also quite easy. First make sure you are up to
date with official branch:

git checkout main pull origin

Then do your changes, i.e. apply the patch:

patch -r someones_cool_feature.diff

If you see that there were some files added to the tree, please add them to git:

git add beaglebone-black/some_new_file

Then make a commit (after adding files):

git commit -a -m ”committed a patch from a kind contributor adding feature X”

After your changes are committed, you can push toGitLab:

git push origin

Tagging the official branch If you want to put tag on the current BeagleBoard official branch (this is usually
done to mark a new release), you need to follow these steps:

First make sure you are up to date with official branch:

git checkout main pull origin

Then add the actual tag:

git tag new_release

And push it to GitLab:

20 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230308-wip

git push --tags origin main

Additional Resources There are a lot of different nice guides to using Git on the web:

• Understanding Git Conceptually

• git ready: git tips

• https://web.archive.org/web/20121115132047/http://cheat.errtheblog.com/s/git

• https://docs.scipy.org/doc/numpy-1.15.1/dev/gitwash/development_workflow.html Numpy is also evalu-
ating git

• https://github.github.com/training-kit/downloads/github-git-cheat-sheet

• https://skills.github.com/

• Pro Git

Documentation Style Guide

Note: This is currently a work-in-progress placeholder for some notes on how to style the BeagleBoard Doc-
umentation Project.

See the Zephyr Project Documentation Guidelines as a starting point.

ReStructuredText Cheat Sheet

BeagleBoard.org docs site uses ReStructuredText (rst) which is a file format1 for textual data used primarily in
the Python programming language community for technical documentation. It is part of the Docutils project
of the Python Doc-SIG, aimed at creating a set of tools for Python similar to Javadoc for Java or Plain Old
Documentation for Perl. If you are new with rst you may go through this rst cheat sheet234 chapter to gain
enough skills to edit and update any page on the BeagleBoard.org docs site. some things you should keep in
mind while working with rst,

1. like Python, RST syntax is sensitive to indentation !

2. RST requires blank lines between paragraphs

Text formatting With asterisk you can format the text as italic & bold,

1. Single asterisk (*) like *emphasis* gives you italic text

2. Double asterisk (**) like **strong emphasis** gives you bold text

With backquote character (‘) you can format the text as link & inline literal.

1. See Links section on how single backquote can be used to create a link like this.

2. With double back quotes before and after text you can easily create inline lierals.

Note: backquote can be found below escape key on most keyboards.

1 reStructuredText wiki page
2 Sphinx and RST syntax guide (0.9.3)
3 Quick reStructuredText (sourceforge)
4 A two-page cheatsheet for restructured text

1.3. Contribution 21

https://www.sbf5.com/~cduan/technical/git/
http://gitready.com/
https://web.archive.org/web/20121115132047/http://cheat.errtheblog.com/s/git
https://docs.scipy.org/doc/numpy-1.15.1/dev/gitwash/development_workflow.html
https://github.github.com/training-kit/downloads/github-git-cheat-sheet
https://skills.github.com/
https://git-scm.com/book/en/v2
https://docs.zephyrproject.org/latest/contribute/documentation/guidelines.html
www.beagleboard.org
https://en.wikipedia.org/wiki/ReStructuredText
https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html#internal-and-external-links
https://docutils.sourceforge.io/docs/user/rst/quickref.html#hyperlink-targets
https://github.com/ralsina/rst-cheatsheet

BeagleBoard Docs, Release 1.0.20230308-wip

Headings For each document we divide sections with headings and in ReStructuredText we can use matching
overline and underline to indicate a heading.

1. Document heading (H1) use #.

2. First heading (H2) use *.

3. Second heading (H3) use =.

4. Third heading (H4) use -.

5. Fourth heading (H5) use ~.

Note: You can include only one (H1) # in a single documentation page.

Make sure the length of your heading symbol is at least (or more) the at least of the heading text, for example:

incorrect H1
①

correct H1
############ ②

① Length of heading symbol # is smaller than the content above.

② Shows the correct way of setting the document title (H1) with #.

Code For adding a code snippet you can use tab indentation to start. For more refined code snippet display
we have the code-block and literalinclude directives as shown below.

Indentation This the simplest way of adding code snippet in ReStructuredText.

This is python code:: ①
②
import numpy as np ③
import math

① Provide title of your code snippet and add :: after the text.

② Empty line after the title is required for this to work.

③ Start adding your code.

Output This is python code:

import numpy as np
import math

Code block Simple indentation only supports python program highlighting but, with code block you can spec-
ify which language is your code written in. code-block also provides better readability and line numbers
support you can useas shown below.

.. code-block:: python ①
:linenos: ②

import numpy as np ③
import math

22 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230308-wip

① Start with adding .. code-block:: and then add language of code like python, bash, javascript, etc.

② Optionally, you can enable line numbers for your code.

③ Start adding your code.

Output

1 import numpy as np
2 import math

Literal include To include the entire code or a code snippet from a program file you can use this directive.

.. literalinclude:: filename.cpp ①
:caption: ②
:linenos: ③
:language: C++ ④
:lines: 2, 4-7 ⑤
:start-after: 4 ⑥
:end-before: 7 ⑦
:lineno-start: 113 ⑧

① Provide the code file destination.

② Provide caption for the code.

③ Enable line numbers.

④ Set programming language.

⑤ Cherry pick some lines from a big program file.

⑥ Display the code snippet from a specific line number.

⑦ Set a specific line number as end of code snippet.

⑧ Instead of starting line number from 1 start it with some other number. It’s useful when you use :lines:,
:start-after:, and :end-before:.

Links We have three types of links to use in sphinx,

1. External links (http(s) links).

2. Implicit links to title (within same rst file).

3. Explicit links (labels that can be used anywhere in the project).

External links For a simple link to a site the format is

`<www.beagleboard.org>`_

this will be rendered as www.beagleboard.org.

You can also include a label to the link as shown below.

`BeagleBoard.org <www.beagleboard.org>`_

this will be rendered as BeagleBoard.org.

Implicit Links These are basically the headings inside the rst page which can be used as a link to that section
within document.

1.3. Contribution 23

www.beagleboard.org
www.beagleboard.org

BeagleBoard Docs, Release 1.0.20230308-wip

`Links`_

when rendered it becomes Links

Explicit link These are special links you can assign to a specific part of the document and reference anywhere
in the project unlike implicit links which can be used only within the document they are defined. On top of each
page you’ll see some text like .. _rst-cheat-sheet: is used to create a label for this chapter. These
are called the explicit links amd you can reference these using two methods.

1 rst-cheat-sheet_

2 :ref:`<rst-cheat-sheet>`_

Both can be used inside/outside of the document and the rendered link will take you directly to that specific
segment.

Annotations

.. callout:: ①

.. code-block:: python �

import numpy as np # <1> ③
import math # <2>

.. annotations:: ④

<1> Comment #1 ⑤

<2> Comment #2

.. annotations::

① Indent everything under a `callout`

② Create a normal block for what you want to annotate

③ Add ``<number>`` everywhere you want to annotate. Put it under a␣
↪→comment block if you want the code to run when copied directly.

④ Create an `annotations` block to hold your callout comments

⑤ Create an entry, separating each with a blank line and prefixing them␣
↪→with ``<number>``

import numpy as np # �
import math # �

① Comment #1

② Comment #2

Important: In the example, I inserted the invisible UTF character U+FEFF after the opening < to avoid it
being interpreted as a callout symbol. Be sure to remove that character if you attempt to copy-and-paste the
example.

More

24 Chapter 1. Introduction

BeagleBoard Docs, Release 1.0.20230308-wip

footnotes

1.3. Contribution 25

BeagleBoard Docs, Release 1.0.20230308-wip

26 Chapter 1. Introduction

Chapter 2

Boards

BeaglePlay is designed to make embedded Linux simpler with boundless options for connectivity, sensors,
actuators and indicators without breadboarding or other complex wiring solutions.

BeagleBone is a family of ARM-based, Linux-capable boards intended to be bare-bones, with a balance of
features to enable rapid prototyping and provide a solid reference for building end products.

PocketBeagle boards are ultra-tiny ARM-based, Linux-capable boards intended to be very low cost, withminimal
features suitable for beginners and attractive to professionals looking for a more minimal starting point.

BeagleBone and PocketBeagle Capes are add-on boards for BeagleBone and PocketBeagle boards.

BeagleConnect boards are ARM microcontroller-based, Zephyr-capable boards meant to act as ultra low cost
smart peripherals to their Linux-capable counterparts, with connectivity options that enable almost endless
sensing and actuation expansion.

BeagleBoard is a family of ARM-based, Linux-capable boards where this project started.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

2.1 BeagleBone (all)

BeagleBone boards are intended to be bare-bones, with a balance of features to enable rapid prototyping and
provide a solid reference for building end products.

The most popular design is BeagleBone Black, a staple reference for an open hardware embedded Linux single
board computer.

BeagleBone AI-64 is our most powerful design with tremendousmachine learning inference performance, 64-bit
processing and a mixture of microcontrollers for various types of highly-reliable and low-latency control.

For simplicity of developing small, mobile robotics, check out BeagleBone Blue, a highly integrated board with
motor drivers, battery support, altimeter, gyroscope, accelerometer, and much more to get started developing
quickly.

27

http://creativecommons.org/licenses/by-sa/4.0/

BeagleBoard Docs, Release 1.0.20230308-wip

The System Reference Manual for each BeagleBone board is below. Older boards are supported with links to
their latest PDF-formatted System Reference Manual and the latest boards are included both here and in the
downloadable beagleboard-docs.pdf linked on the bottom-left of your screen.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

All boards received without RMA approval will not be worked on.

• BeagleBone (original)

• BeagleBone Black

• BeagleBone Blue

• BeagleBone AI

• BeagleBone AI-64

2.2 BeagleBone Black

BeagleBone Black is a low-cost, community-supported development platform for developers and hobbyists.
Boot Linux in under 10 seconds and get started on development in less than 5 minutes with just a single USB
cable.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

28 Chapter 2. Boards

http://creativecommons.org/licenses/by-sa/4.0/
https://git.beagleboard.org/beagleboard/beaglebone/-/blob/master/BeagleBone_SRM_A6_0_1.pdf
http://creativecommons.org/licenses/by-sa/4.0/

BeagleBoard Docs, Release 1.0.20230308-wip

2.2.1 Introduction

This document is the System Reference Manual for the BeagleBone Black and covers its use and design. The
board will primarily be referred to in the remainder of this document simply as the board, although it may also
be referred to as the BeagleBone Black as a reminder. There are also references to the original BeagleBone as
well, and will be referenced as simply BeagleBone.

This design is subject to change without notice as we will work to keep improving the design as the product
matures based on feedback and experience. Software updates will be frequent and will be independent of the
hardware revisions and as such not result in a change in the revision number.

Make sure you check the docs repository frequently for the most up to date information.

https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/beaglebone-black

2.2.2 Change History

This section describes the change history of this document and board. Document changes are not always a
result of a board change. A board change will always result in a document change.

Document Change History

Table 2.1: AsciiDoc Change History
Rev Changes Date By
A4 Preliminary January 4, 2013 GC
A5 Production release January 8.2013 GC

continues on next page

2.2. BeagleBone Black 29

https://git.beagleboard.org/docs/docs.beagleboard.io/-/tree/main/beaglebone-black

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.1 – continued from previous page
Rev Changes Date By
A5.1

1. Added information on Power button and the battery ac-
cess points.

2. Final production released version.

April 1 2013 GC

A5.2
1. Edited version.
2. Added numerous pictures of the Rev A5A board.

April 23 2013 GC

A5.3
1. Updated serial number locations.
2. Corrected the feature table for 4 UARTS
3. Corrected eMMC pin table to match other tables in the
manual.

April 30, 2013 GC

A5.4
1. Corrected revision listed in section 2. Rev A5A is the initial
production release.

2. Added all the locations of the serial numbers
3. Made additions to the compatibility list.
4. Corrected «table-7» for LED GPIO pins.
5. Fixed several typos.
6. Added some additional information about LDOs and Step-
Down converters.

7. Added short section on HDMI.

May 12, 2013 GC

A5.5
1. Release of the A5B version.
2. The LEDS were dimmed by changing the resistors.
3. The serial termination mode was incorporated into the
PCB.

May 20, 2013 GC

A5.6
1. Added information on Rev A5C
2. Added PRU/ICSS options to tables for P8 and P9.
3. Added section on USB Host Correct modes on «table-15».
4. Fixed a few typos

June 16, 2013 GC

A5.7
1. Updated assembly revision to A6.
2. PCB change to add buffer to the reset line and ground the
oscillator GND pin.

3. Added resistor on PCB for connection of OSC_GND to
board GND.

August 9, 2013 GC

A6
1. Added Rev A6 changes.

October 11, 2013 GC

A6A
1. Added Rev A6A changes

December 17, 2013 GC

B
1. Changed the processor to the AM3358BZCZ

January 20, 2013 GC

continues on next page

30 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.1 – continued from previous page
Rev Changes Date By
C

1. Changed the eMMC from 2GB to 4GB.
2. Added additional supplier to DDR2 and eMMC.

March 21,2014 GC

C.1
1. Added note to recommend powering off the board with
the power

March 22, 2014 GC

C.2 Numerous community edits and format changes to asciidoc. May 6, 2020 JK
C.3 Added information for board rev C3. August 24, 2021 JK

Board Changes

Rev C3 PCB revision C.

• Updated microSD card cage due to availability. See https://git.beagleboard.org/beagleboard/
beaglebone-black/-/issues/6. Added series resistors and depopulated C5.

• Added reset option (GPIO1_8) for Ethernet PHY to avoid possible start-up issue. See https://git.
beagleboard.org/beagleboard/beaglebone-black/-/issues/4.

• Added series resistors to MMC1 lines and depopulated C24.

• Connected pin A6 of J5 on U13 (eMMC IC) to DGND.

• Changed USB1_VBUS series resistor to 0 ohm.

• Change required PCB revision to C.

Initial boxes mistakenly say rev C1.

Rev C2 PCB revision B6.

• Update memories based on availability. See https://github.com/beagleboard/beaglebone-black/commit/
74914bd01efeb61376ec3dda4bf9143ad2bb635c.

– DDR3:

∗ Kingston D2516EC4BXGGB-U

– eMMC:

∗ Kingston MMC04G-M627-X02U

Rev C1 PCB revision B6.

• Update memories based on availability. See https://github.com/beagleboard/beaglebone-black/commit/
5787736d816832cc8cc9629d19f334b6a12e67f9.

– DDR3:

∗ Micron MT41K256M16TW-107:P

– eMMC:

∗ Micron MTFC4GACAJCN-1M WT

∗ Kingston EMMC04G-S100-A08U

2.2. BeagleBone Black 31

https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/6
https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/6
https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/4
https://git.beagleboard.org/beagleboard/beaglebone-black/-/issues/4
https://github.com/beagleboard/beaglebone-black/commit/74914bd01efeb61376ec3dda4bf9143ad2bb635c
https://github.com/beagleboard/beaglebone-black/commit/74914bd01efeb61376ec3dda4bf9143ad2bb635c
https://github.com/beagleboard/beaglebone-black/commit/5787736d816832cc8cc9629d19f334b6a12e67f9
https://github.com/beagleboard/beaglebone-black/commit/5787736d816832cc8cc9629d19f334b6a12e67f9

BeagleBoard Docs, Release 1.0.20230308-wip

Rev C

• Changed the eMMC from 2GB to 4GB.

2GB devices are getting harder to get as they are being phased out. This required us to move to 4GB. We now
have two sources for the device. This will however, require an increase in the price of the board.

Rev B

• Changed the processor to the AM3358BZCZ100.

Rev A6A

• Added connection from 32KHz OSC_GND to system ground and changed C106 to 1uF.

• Changes C25 to 2.2uF. This resolved an issue we were seeing in a few boards where the board would not
boot in 1 in 20 tries.

• Change required PCB revision to B6.

Rev A6

• In random instances there could be a glitch in the SYS_RESETn signal from the processor where the
SYS_RESETn signal was taken high for a momentary amount of time before it was supposed to. To
prevent this, the signal was ORed with the PORZn (Power On reset).

• Noise issues were observed in other design where the clock oscillator was getting hit due to a suspected
issue in ground bounce. A zero ohm resistor was added to connect the OSC_GND to the system ground.

There are no new features added as a result of these changes.

Rev A5C We were seeing some fallout in production test where we were seeing some jitter on the HDMI
display test. It started showing up on our second production run. R46, R47, R48 were changed to 0 ohm from
33 ohm. R45 was taken from 330 ohm to 22 ohm.

We do not know of any boards that were shipped with this issue as this issue was caught in production test.
No impact on features or functionality resulted from this change.

Rev A5B There is no operational difference between the Rev A5A and the Rev A5B. There were two changes
made to the A5B version.

• Due to complaints about the brightness of the LEDs keeping people awake at night, the LEDs were
dimmed. Resistors were changed from 820 ohms to 4.75K ohms.

• The PCB revision was updated to incorporate the hand mod that was being done on the board during
manufacturing. The resistor was incorporated into the next revision of the PCB.

The highest supported resolution is now listed as 1920x1080@24Hz. This was not a result of any hardware
changes but only updated software. The A5A version also supports this resolution.

Rev A5A This is the initial production release of the board. We will be tracking changes from this point
forward.

2.2.3 Connecting Up Your BeagleBone Black

This section provides instructions on how to hook up your board. Two scenarios will be discussed:

1. Tethered to a PC and

2. As a standalone development platform in a desktop PC configuration.

32 Chapter 2. Boards

mailto:1920x1080@24Hz

BeagleBoard Docs, Release 1.0.20230308-wip

What’s In the Box

In the box you will find three main items as shown in «figure-1».

• BeagleBone Black

• miniUSB to USB Type A Cable

• Instruction card with link to the support WIKI address.

This is sufficient for the tethered scenario and creates an out of box experience where the board can be used
immediately with no other equipment needed.

Fig. 2.1: In the Box

Main Connection Scenarios

This section will describe how to connect the board for use. This section is basically a slightly more detailed
description of the Quick Start Guide that came in the box. There is also a Quick Start Guide document on the
board that should also be referred to. The intent here is that someone looking to purchase the board will be
able to read this section and get a good idea as to what the initial set up will be like.

The board can be configured in several different ways, but we will discuss the two most common scenarios as
described in the Quick Start Guide card that comes in the box.

• Tethered to a PC via the USB cable

– Board is accessed as a storage drive

– Or a RNDIS Ethernet connection.

• Standalone desktop

– Display

– Keyboard and mouse

– External 5V power supply

Each of these configurations is discussed in general terms in the following sections.

For an up-to-date list of confirmed working accessories please go to BeagleBone_Black_Accessories

2.2. BeagleBone Black 33

https://elinux.org/Beagleboard:BeagleBone_Black_Accessories

BeagleBoard Docs, Release 1.0.20230308-wip

Tethered To A PC

In this configuration, the board is powered by the PC via the provided USB cable–no other cables are required.
The board is accessed either as a USB storage drive or via the browser on the PC. You need to use either Firefox
or Chrome on the PC, Internet Explorer will not work properly. «figure-2» shows this configuration.

Fig. 2.2: Tethered Configuration

All the power for the board is provided by the PC via the USB cable. In some instances, the PC may not be able
to supply sufficient power for the board. In that case, an external 5VDC power supply can be used, but this
should rarely be necessary.

Connect the Cable to the Board

1. Connect the small connector on the USB cable to the board as shown in figure-3. The connector is on
the bottom side of the board.

Fig. 2.3: USB Connection to the Board

2. Connect the large connector of the USB cable to your PC or laptop USB port.

3. The board will power on and the power LED will be on as shown in figure below.

4. When the board starts to the booting process started by the process of applying power, the LEDs will
come on in sequence as shown in figure-5 below. It will take a few seconds for the status LEDs to come
on, so be patient. The LEDs will be flashing in an erratic manner as it begins to boot the Linux kernel.

Accessing the Board as a Storage Drive The board will appear around a USB Storage drive on your PC
after the kernel has booted, which will take around 10 seconds. The kernel on the board needs to boot before
the port gets enumerated. Once the board appears as a storage drive, do the following:

1. Open the USB Drive folder.

2. Click on the file named start.htm

34 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.4: Board Power LED

Fig. 2.5: Board Boot Status

2.2. BeagleBone Black 35

BeagleBoard Docs, Release 1.0.20230308-wip

3. The file will be opened by your browser on the PC and you should get a display showing the Quick Start
Guide.

4. Your board is now operational! Follow the instructions on your PC screen.

Standalone w/Display and Keyboard/Mouse

In this configuration, the board works more like a PC, totally free from any connection to a PC as shown in
«figure-6». It allows you to create your code to make the board do whatever you need it to do. It will however
require certain common PC accessories. These accessories and instructions are described in the following
section.

Fig. 2.6: Desktop Configuration

Optionally an Ethernet cable can also be used for network access.

Required Accessories In order to use the board in this configuration, you will need the following accessories:

• 1 x 5VDC 1A power supply

• 1 x HDMI monitor or a DVI-D monitor. (NOTE: Only HDMI will give you audio capability).

• 1 x Micro HDMI to HDMI cable or a Micro HDMI to DVI-D adapter.

• 1 x USB wireless keyboard and mouse combo.

• 1 x USB HUB (OPTIONAL). The board has only one USB host port, so you may need to use a USB Hub if
your keyboard and mouse requires two ports.

For an up-to-date list of confirmed working accessories please go to BeagleBone_Black_Accessories

Connecting Up the Board

36 Chapter 2. Boards

https://elinux.org/Beagleboard:BeagleBone_Black_Accessories

BeagleBoard Docs, Release 1.0.20230308-wip

1. Connect the big end of the HDMI cable as shown in figure-7 to your HDMI monitor. Refer to your monitor
Owner’s Manual for the location of your HDMI port. If you have a DVI-D Monitor go to Step 3, otherwise
proceed to Step 4 .

Fig. 2.7: Connect microHDMI Cable to the Monitor

2. If you have a DVI-D monitor you must use a DVI-D to HDMI adapter in addition to your HDMI cable. An
example is shown in figure-8 below from two perspectives. If you use this configuration, you will not
have audio support.

Fig. 2.8: DVI-D to HDMI Adapter

3. If you have a single wireless keyboard and mouse combination such as seen in figure-9 below, you need
to plug the receiver in the USB host port of the board as shown in figure-10 .

Fig. 2.9: Wireless Keyboard and Mouse Combo

If you have a wired USB keyboard requiring two USB ports, you will need a HUB similar to the ones shown in
figure below . You may want to have more than one port for other devices. Note that the board can only supply
up to 500mA, so if you plan to load it down, it will need to be externally powered.

4. Connect the Ethernet Cable

If you decide you want to connect to your local area network, an Ethernet cable can be used. Connect the
Ethernet Cable to the Ethernet port as shown in figure below . Any standard 100M Ethernet cable should work.

5. The final step is to plug in the DC power supply to the DC power jack as shown in figure below.

6. The cable needed to connect to your display is a microHDMI to HDMI. Connect the microHDMI connector
end to the board at this time. The connector is on the bottom side of the board as shown in figure-14

2.2. BeagleBone Black 37

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.10: Connect Keyboard and Mouse Receiver to the Board

Fig. 2.11: Keyboard and Mouse Hubs

Fig. 2.12: Ethernet Cable Connection

38 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.13: External DC Power

below.

Fig. 2.14: Connect microHDMI Cable to the Board

The connector is fairly robust, but we suggest that you not use the cable as a leash for your Beagle. Take
proper care not to put too much stress on the connector or cable.

7. Booting the Board

As soon as the power is applied to the board, it will start the booting up process. When the board starts to boot
the LEDs will come on in sequence as shown in figure-15 below. It will take a few seconds for the status LEDs
to come on, so be patient. The LEDs will be flashing in an erratic manner as it boots the Linux kernel.

While the four user LEDs can be overwritten and used as desired, they do have specific meanings in the image
that is shipped with the board once the Linux kernel has booted.

• USER0 is the heartbeat indicator from the Linux kernel.

• USER1 turns on when the microSD card is being accessed

• USER2 is an activity indicator. It turns on when the kernel is not in the idle loop.

• USER3 turns on when the onboard eMMC is being accessed.

8. A Booted System

2.2. BeagleBone Black 39

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.15: Board Boot Status

a. The board will have a mouse pointer appear on the screen as it enters the Linux boot step. You may
have to move the physical mouse to get the mouse pointer to appear. The system can come up in
the suspend mode with the HDMI port in a sleep mode.

b. After a minute or two a login screen will appear. You do not have to do anything at this point.

c. After a minute or two the desktop will appear. It should be similar to the one shown in figure-1.
HOWEVER, it will change from one release to the next, so do not expect your system to look exactly
like the one in the figure, but it will be very similar.

d. And at this point you are ready to go! figure-16 shows the desktop after booting.

Fig. 2.16: Desktop Screen

9. Powering Down

A. Press the power button momentarily.

B. The system will power down automatically.

C. Remove the power jack.

40 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

2.2.4 BeagleBone Black Overview

The BeagleBone Black is the latest addition to the BeagleBoard.org family and like its predecessors, is designed
to address the Open Source Community, early adopters, and anyone interested in a low cost ARM Cortex-A8
based processor.

It has been equipped with a minimum set of features to allow the user to experience the power of the processor
and is not intended as a full development platform as many of the features and interfaces supplied by the
processor are not accessible from the BeagleBone Black via onboard support of some interfaces. It is not a
complete product designed to do any particular function. It is a foundation for experimentation and learning
how to program the processor and to access the peripherals by the creation of your own software and hardware.

It also offers access to many of the interfaces and allows for the use of add-on boards called capes, to add
many different combinations of features. A user may also develop their own board or add their own circuitry.

BeagleBone Black is manufactured and warranted by partners listed at https://beagleboard.org/logo for the
benefit of the community and its supporters.

Jason Kridner of Texas Instruments handles the community promotions and is the spokesman for Beagle-
Board.org.

The board is designed by Gerald Coley of EmProDesign, a charter member of the BeagleBoard.org community.

The PCB layout up through PCB revision B was done by Circuitco and Circuitco is the sole funder of its devel-
opment and transition to production. Later PCB revisions have been made by Embest, a subsidiary of Avent.

The Software is written and supported by the thousands of community members, including Jason Kridner,
employee of Texas Instruments, and Robert Nelson, employee of DigiKey.

BeagleBone Compatibility

The board is intended to be compatible with the original BeagleBone as much as possible. There are several
areas where there are differences between the two designs. These differences are listed below, along with the
reasons for the differences.

• Sitara AM3358BZCZ100, 1GHZ, processor.

– Sorry, we just had to make it faster.

• 512MB DDR3L

– Cost reduction

– Performance boost

– Memory size increase

– Lower power

• No Serial port by default

– Cost reduction

– Can be added by buying a TTL to USB Cable that is widely available

– Single largest cost reduction action taken

• No JTAG emulation over USB

– Cost reduction JTAG header is not populated, but can easily be mounted.

– EEPROM Reduced from 32KB to 4KB

– Cost Reduction

• Onboard Managed NAND (eMMC)

– 4GB

– Cost reduction

2.2. BeagleBone Black 41

https://beagleboard.org/logo

BeagleBoard Docs, Release 1.0.20230308-wip

– Performance boost x8 vs. x4 bits

– Performance boost due to deterministic properties vs. microSD card

• GPMC bus may not be accessible from the expansion headers in some cases

– Result of eMMC on the main board

– Signals are still routed to the expansion connector

– If eMMC is not used, signals can be used via expansion if eMMC is held in reset

• There may be 10 less GPIO pins available

– Result of eMMC

– If eMMC is not used, could still be used

• The power expansion header, for battery and backlight, has been removed

– _*Cost reduction* , space reduction

– Four pins were added to provide access to the battery charger function.

• HDMI interface onboard

– Feature addition

– Audio and video capable

– Micro HDMI

• No three function USB cable

– Cost reduction

• GPIO3_21 has a 24.576 MHZ clock on it.

– This is required by the HDMI Framer for Audio purposes. We needed to run a clock into the processor
to generate the correct clock frequency. The pin on the processor was already routed to the expan-
sion header. In order not to remove this feature on the expansion header, it was left connected. In
order to use the pin as a GPIO pin, you need to disable the clock. While this disables audio to the
HDMI, the fact that you want to use this pin for something else, does the same thing.

BeagleBone Black Features and Specification

This section covers the specifications and features of the board and provides a high level description of the
major components and interfaces that make up the board. table below provides a list of the features.

Table 2.2: BeagleBone Black Features
Feature

Processor Sitara AM3358BZCZ100 1GHz, 2000 MIPS
Graphics Engine SGX530 3D, 20M Polygons/S
SDRAM Memory 512MB DDR3L 800MHZ
Onboard Flash 4GB, 8bit Embedded MMC
PMIC TPS65217C PMIC regulator and one additional LDO.
Debug Support Optional Onboard 20-pin CTI JTAG, Serial Header
Power Source miniUSB USB or DC Jack
PCB 3.4” x 2.1”
Indicators 1-Power, 2-Ethernet, 4-User Controllable LEDs
HS USB 2.0
Client Port

Access to USB0, Client mode via miniUSB

HS USB 2.0 Host
Port

Access to USB1, Type A Socket, 500mA LS/FS/HS

Serial Port UART0 access via 6 pin 3.3V TTL Header. Header is populated
continues on next page

42 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.2 – continued from previous page
Feature

Ethernet 10/100, RJ45
SD/MMC Connec-
tor

microSD , 3.3V

User Input
1. Reset Button
2. Boot Button
3. Power Button

Video Out
1. 16b HDMI, 1280x1024 (MAX)
2. 1024x768,1280x720,1440x900 ,1920x1080@24Hz w/EDID Support

Audio Via HDMI Interface, Stereo
Expansion Con-
nectors 1. Power 5V, 3.3V , VDD_ADC(1.8V)

2. 3.3V I/O on all signals
3. McASP0, SPI1, I2C, GPIO(69 max), LCD, GPMC, MMC1, MMC2, 7
4. AIN _(1.8V MAX)_, 4 Timers, 4 Serial Ports, CAN0,
5. EHRPWM(0,2),XDMA Interrupt, Power button, Expansion Board ID (Up to 4 can
be stacked)

Weight 1.4 oz (39.68 grams)
Power Refer to section-6-1-7

Board Component Locations

This section describes the key components on the board. It provides information on their location and function.
Familiarize yourself with the various components on the board.

Connectors, LEDs, and Switches figure below shows the locations of the connectors, LEDs, and switches
on the PCB layout of the board.

• DC Power is the main DC input that accepts 5V power.

• Power Button alerts the processor to initiate the power down sequence and is used to power down the
board.

• 10/100 Ethernet is the connection to the LAN.

• Serial Debug is the serial debug port.

• USB Client is a miniUSB connection to a PC that can also power the board.

• BOOT switch can be used to force a boot from the microSD card if the power is cycled on the board,
removing power and reapplying the power to the board..

• There are four blue LED’s that can be used by the user.

• Reset Button allows the user to reset the processor.

• microSD slot is where a microSD card can be installed.

• microHDMI connector is where the display is connected to.

• USB Host can be connected different USB interfaces such as Wi-Fi, BT, Keyboard, etc.

Key Components figure below shows the locations of the key components on the PCB layout of the board.

• Sitara AM3358BZCZ100 is the processor for the board.

2.2. BeagleBone Black 43

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.17: Connectors, LEDs and Switches

Fig. 2.18: Key Components

44 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

• Micron 512MB DDR3L or**Kingston 512mB DDR3** is the Dual Data Rate RAM memory.

• TPS65217C PMIC provides the power rails to the various components on the board.

• SMSC Ethernet PHY is the physical interface to the network.

• Micron eMMC is an onboard MMC chip that holds up to 4GB of data.

• HDMI Framer provides control for an HDMI or DVI-D display with an adapter.

2.2.5 BeagleBone Black High Level Specification

This section provides the high level specification of the BeagleBone Black.

Block Diagram

Fig. 2.19: BeagleBone Black Key Components

Processor

The revision B and later boards have moved to the Sitara AM3358BZCZ100 device.

Memory

Described in the following sections are the three memory devices found on the board.

2.2. BeagleBone Black 45

BeagleBoard Docs, Release 1.0.20230308-wip

512MB DDR3L A single 256Mb x16 DDR3L 4Gb (512MB) memory device is used. The memory used is one
of two devices:

• MT41K256M16HA-125 from Micron

• D2516EC4BXGGB from Kingston

It will operate at a clock frequency of 400MHz yielding an effective rate of 800MHZ on the DDR3L bus allowing
for 1.6GB/S of DDR3L memory bandwidth.

4KB EEPROM A single 4KB EEPROM is provided on I2C0 that holds the board information. This information
includes board name, serial number, and revision information. This is the not the same as the one used on
the original BeagleBone. The device was changed for cost reduction reasons. It has a test point to allow the
device to be programmed and otherwise to provide write protection when not grounded.

4GB Embedded MMC A single 4GB embedded MMC (eMMC) device is on the board. The device connects to
the MMC1 port of the processor, allowing for 8bit wide access. Default boot mode for the board will be MMC1
with an option to change it to MMC0, the SD card slot, for booting from the SD card as a result of removing and
reapplying the power to the board. Simply pressing the reset button will not change the boot mode. MMC0
cannot be used in 8Bit mode because the lower data pins are located on the pins used by the Ethernet port.
This does not interfere with SD card operation but it does make it unsuitable for use as an eMMC port if the 8
bit feature is needed.

MicroSD Connector The board is equipped with a single microSD connector to act as the secondary boot
source for the board and, if selected as such, can be the primary boot source. The connector will support larger
capacity microSD cards. The microSD card is not provided with the board. Booting from MMC0 will be used to
flash the eMMC in the production environment or can be used by the user to update the SW as needed.

Boot Modes As mentioned earlier, there are four boot modes:

• eMMC Boot: This is the default boot mode and will allow for the fastest boot time and will enable the
board to boot out of the box using the pre-flashed OS image without having to purchase an microSD card
or an microSD card writer.

• SD Boot: This mode will boot from the microSD slot. This mode can be used to override what is on the
eMMC device and can be used to program the eMMC when used in the manufacturing process or for field
updates.

• Serial BooT: This mode will use the serial port to allow downloading of the software direct. A separate
USB to serial cable is required to use this port.

• USB Boot: This mode supports booting over the USB port.

Software to support USB and serial boot modes is not provided by beagleboard.org.Please contact TI for support
of this feature.

A switch is provided to allow switching between the modes.

• Holding the boot switch down during a removal and reapplication of power without a microSD card in-
serted will force the boot source to be the USB port and if nothing is detected on the USB client port, it
will go to the serial port for download.

• Without holding the switch, the board will boot try to boot from the eMMC. If it is empty, then it will try
booting from the microSD slot, followed by the serial port, and then the USB port.

• If you hold the boot switch down during the removal and reapplication of power to the board, and you
have a microSD card inserted with a bootable image, the board will boot from the microSD card.

NOTE: Pressing the RESET button on the board will NOT result in a change of the_ _boot mode. You MUST
remove power and reapply power to change the boot mode.The boot pins are sampled during power on reset
from the PMIC to the processor.The reset button on the board is a warm reset only and will not force a boot
mode change.

46 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Power Management

The TPS65217C power management device is used along with a separate LDO to provide power to the system.
The**TPS65217C** version provides for the proper voltages required for the DDR3L. This is the same device
as used on the original BeagleBone with the exception of the power rail configuration settings which will be
changed in the internal EEPROM to the TPS65217C to support the new voltages.

DDR3L requires 1.5V instead of 1.8V on the DDR2 as is the case on the original BeagleBone. The 1.8V regulator
setting has been changed to 1.5V for the DDR3L. The LDO3 3.3V rail has been changed to 1.8V to support those
rails on the processor. LDO4 is still 3.3V for the 3.3V rails on the processor. An external LDOTLV70233 provides
the 3.3V rail for the rest of the board.

PC USB Interface

The board has a miniUSB connector that connects the USB0 port to the processor. This is the same connector
as used on the original BeagleBone.

Serial Debug Port

Serial debug is provided via UART0 on the processor via a single 1x6 pin header. In order to use the interface
a USB to TTL adapter will be required. The header is compatible with the one provided by FTDI and can
be purchased for about $$12 to $$20 from various sources. Signals supported are TX and RX. None of the
handshake signals are supported.

USB1 Host Port

On the board is a single USB Type A female connector with full LS/FS/HS Host support that connects to USB1 on
the processor. The port can provide power on/off control and up to 500mA of current at 5V. Under USB power,
the board will not be able to supply the full 500mA, but should be sufficient to supply enough current for a
lower power USB device supplying power between 50 to 100mA.

You can use a wireless keyboard/mouse configuration or you can add a HUB for standard keyboard and mouse
interfacing.

Power Sources

The board can be powered from four different sources:

• A USB port on a PC

• A 5VDC 1A power supply plugged into the DC connector.

• A power supply with a USB connector.

• Expansion connectors

The USB cable is shipped with each board. This port is limited to 500mA by the Power Management IC. It is
possible to change the settings in the TPS65217C to increase this current, but only after the initial boot. And,
at that point the PC most likely will complain, but you can also use a dual connector USB cable to the PC to get
to 1A.

The power supply is not provided with the board but can be easily obtained from numerous sources. A 1A
supply is sufficient to power the board, but if there is a cape plugged into the board or you have a power
hungry device or hub plugged into the host port, then more current may needed from the DC supply.

Power routed to the board via the expansion header could be provided from power derived on a cape. The DC
supply should be well regulated and 5V +/-.25V.

2.2. BeagleBone Black 47

BeagleBoard Docs, Release 1.0.20230308-wip

Reset Button

When pressed and released, causes a reset of the board. The reset button used on the BeagleBone Black is a
little larger than the one used on the original BeagleBone. It has also been moved out to the edge of the board
so that it is more accessible.

Power Button

A power button is provided near the reset button close to the Ethernet connector. This button takes advantage
of the input to the PMIC for power down features. While a lot of capes have a button, it was decided to add this
feature to the board to ensure everyone had access to some new features. These features include:

• Interrupt is sent to the processor to facilitate an orderly shutdown to save files and to un-mount drives.

• Provides ability to let processor put board into a sleep mode to save power.

• Can alert processor to wake up from sleep mode and restore state before sleep was entered.

If you hold the button down longer than 8 seconds, the board will power off if you release the button when the
power LED turns off. If you continue to hold it, the board will power back up completing a power cycle.

We recommend that you use this method to power down the board. It will also help prevent contamination of
the SD card or the eMMC.

If you do not remove the power jack, you can press the button again and the board will power up.

Indicators

There are a total of five blue LEDs on the board.

• One blue power LED indicates that power is applied and the power management IC is up. If this LED
flashes when applying power, it means that an excess current flow was detected and the PMIC has shut
down.

• Four blue LEDs that can be controlled via the SW by setting GPIO pins.

In addition, there are two LEDs on the RJ45 to provide Ethernet status indication. One is yellow (100M Link up
if on) and the other is green (Indicating traffic when flashing).

CTI JTAG Header

A place for an optional 20 pin CTI JTAG header is provided on the board to facilitate the SW development and
debugging of the board by using various JTAG emulators. This header is not supplied standard on the board.
To use this, a connector will need to be soldered onto the board.

If you need the JTAG connector you can solder it on yourself. No other components are needed. The connector is
made by Samtec and the part number is FTR-110-03-G-D-06. You can purchase it from http://www.digikey.com/

HDMI Interface

A single HDMI interface is connected to the 16 bit LCD interface on the processor. The 16b interface was used
to preserve as many expansion pins as possible to allow for use by the user. The NXP TDA19988BHN is used
to convert the LCD interface to HDMI and convert the audio as well. The signals are still connected to the
expansion headers to enable the use of LCD expansion boards or access to other functions on the board as
needed.

The HDMI device does not support HDCP copy protection. Support is provided via EDID to allow the SW to
identify the compatible resolutions. Currently the following resolutions are supported via the software:

• 1280 x 1024

48 Chapter 2. Boards

http://www.digikey.com

BeagleBoard Docs, Release 1.0.20230308-wip

• 1440 x 900

• 1024 x 768

• 1280 x 720

Cape Board Support

The BeagleBone Black has the ability to accept up to four expansion boards or capes that can be stacked onto
the expansion headers. The word cape comes from the shape of the board as it is fitted around the Ethernet
connector on the main board. This notch acts as a key to ensure proper orientation of the cape.

The majority of capes designed for the original BeagleBone will work on the BeagleBone Black. The two main
expansion headers will be populated on the board. There are a few exceptions where certain capabilities may
not be present or are limited to the BeagleBone Black. These include:

• GPMC bus may NOT be available due to the use of those signals by the eMMC. If the eMMC is used for
booting only and the file system is on the microSD card, then these signals could be used.

• Another option is to use the microSD or serial boot modes and not use the eMMC.

• The power expansion header is not on the BeagleBone Black so those functions are not supported.

For more information on cape support refer to BeagleBone Black Mechanical section.

2.2.6 Detailed Hardware Design

This section provides a detailed description of the Hardware design. This can be useful for interfacing, writing
drivers, or using it to help modify specifics of your own design.

Power Section

This section describes the power section of the design and all the functions performed by the TPS65217C.

TPS65217C PMIC The main Power Management IC (PMIC) in the system is the TPS65217C which is a single
chip power management IC consisting of a linear dual-input power path, three step-down converters, and
four LDOs. LDO stands for Low Drop Out. If you want to know more about an LDO, you can go to http:
//en.wikipedia.org/wiki/Low-dropout_regulator .If you want to learn more about step-down converters, you can
go to

http://en.wikipedia.org/wiki/DC-to-DC_converter

The system is supplied by a USB port or DC adapter. Three high-efficiency 2.25MHz step-down converters are
targeted at providing the core voltage, MPU, and memory voltage for the board.

The step-down converters enter a low power mode at light load for maximum efficiency across the widest
possible range of load currents. For low-noise applications the devices can be forced into fixed frequency PWM
using the I2C interface. The step-down converters allow the use of small inductors and capacitors to achieve
a small footprint solution size.

LDO1 and LDO2 are intended to support system standby mode. In normal operation, they can support up to
100mA each. LDO3 and LDO4 can support up to 285mA each.

By default only LDO1 is always ON but any rail can be configured to remain up in SLEEP state. In particular the
DCDC converters can remain up in a low-power PFMmode to support processor suspendmode. The TPS65217C
offers flexible power-up and power-down sequencing and several house-keeping functions such as power-good
output, pushbutton monitor, hardware reset function and temperature sensor to protect the battery.

For more information on the TPS65217C, refer to http://www.ti.com/product/tps65217C

2.2. BeagleBone Black 49

http://en.wikipedia.org/wiki/Low-dropout_regulator
http://en.wikipedia.org/wiki/Low-dropout_regulator
http://en.wikipedia.org/wiki/DC-to-DC_converter
http://www.ti.com/product/tps65217C

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.20: BeagleBone Black Block Diagram

Fig. 2.21: High Level Power Block Diagram

50 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.22: TPS65217C Block Diagram

2.2. BeagleBone Black 51

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.23: TPS65217 DC Connection

DC Input A 5VDC supply can be used to provide power to the board. The power supply current depends on
how many and what type of add-on boards are connected to the board. For typical use, a 5VDC supply rated
at 1A should be sufficient. If heavier use of the expansion headers or USB host port is expected, then a higher
current supply will be required.

The connector used is a 2.1MM center positive x 5.5mm outer barrel. The 5VDC rail is connected to the
expansion header. It is possible to power the board via the expansion headers from an add-on card. The 5VDC
is also available for use by the add-on cards when the power is supplied by the 5VDC jack on the board.

USB Power The board can also be powered from the USB port. A typical USB port is limited to 500mA max.
When powering from the USB port, the VDD_5V rail is not provided to the expansion headers, so capes that
require the 5V rail to supply the cape direct, bypassing the TPS65217C, will not have that rail available for use.
The 5VDC supply from the USB port is provided on the SYS_5V, the one that comes from the**TPS65217C**,
rail of the expansion header for use by a cape. Figure 24 is the connection of the USB power input on the PMIC.

Power Selection The selection of either the 5VDC or the USB as the power source is handled internally to
the TPS65217C and automatically switches to 5VDC power if both are connected. SW can change the power
configuration via the I2C interface from the processor. In addition, the SW can read the**TPS65217C** and
determine if the board is running on the 5VDC input or the USB input. This can be beneficial to know the
capability of the board to supply current for things like operating frequency and expansion cards.

It is possible to power the board from the USB input and then connect the DC power supply. The board will
switch over automatically to the DC input.

Power Button A power button is connected to the input of the TPS65217C. This is a momentary switch, the
same type of switch used for reset and boot selection on the board.

52 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.24: USB Power Connections

2.2. BeagleBone Black 53

BeagleBoard Docs, Release 1.0.20230308-wip

If you push the button the TPS65217C will send an interrupt to the processor. It is up to the processor to then
pull the**PMIC_POWER_EN** pin low at the correct time to power down the board. At this point, the PMIC is
still active, assuming that the power input was not removed. Pressing the power button will cause the board
to power up again if the processor puts the board in the power off mode.

In power off mode, the RTC rail is still active, keeping the RTC powered and running off the main power input. If
you remove that power, then the RTC will not be powered. You also have the option of using the battery holes
on the board to connect a battery if desired as discussed in the next section.

If you push and hold the button for greater than 8 seconds, the PMIC will power down. But you must release
the button when the power LED turns off. Holding the button past that point will cause the board to power
cycle.

Battery Access Pads Four pads are provided on the board to allow access to the battery pins on the
TPS65217C. The pads can be loaded with a 4x4 header or you may just wire a battery into the pads. In
addition they could provide access via a cape if desired. The four signals are listed below in table-3 .

Table 2.3: BeagleBone Black Battery Pins
PIN DESIGNA-

TION
FUNCTION

BAT TP5 Battery connection point
SENSE TP6 Battery voltage sense input, connect to BAT directly at the battery termi-

nal.
TS TP7 Temperature sense input. Connect to NTC thermistor to sense battery tem-

perature.
GND TP8 System ground.

There is no fuel gauge function provided by the TPS65217C. That would need to be added if that function was
required. If you want to add a fuel gauge, an option is to use 1-wire SPI or I2C device. You will need to add this
using the expansion headers and place it on an expansion board.

NOTE: Refer to the TPS65217C documentation + before connecting anything to these pins.

Power Consumption The power consumption of the board varies based on power scenarios and the board
boot processes. Measurements were taken with the board in the following configuration:

• DC powered and USB powered

• HDMI monitor connected

• USB HUB

• 4GB USB flash drive

• Ethernet connected @ 100M

• Serial debug cable connected

Table 2.4: BeagleBone Black Power Consumption(mA@5V)
MODE USB DC DC+USB
Reset TBD TBD TBD
Idling @ UBoot 210 210 210
Kernel Booting (Peak) 460 460 460
Kernel Idling 350 350 350
Kernel Idling Display Blank 280 280 280
Loading a Webpage 430 430 430

The current will fluctuate as various activates occur, such as the LEDs on and microSD/eMMC accesses.

54 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Processor Interfaces The processor interacts with the TPS65217C via several different signals. Each of
these signals is described below.

I2C0

I2C0 is the control interface between the processor and the TPS65217C. It allows the processor to control the
registers inside the TPS65217C for such things as voltage scaling and switching of the input rails.

PMIC_POWR_EN

On power up the VDD_RTC rail activates first. After the RTC circuitry in the processor has activated it instructs
the**TPS65217C** to initiate a full power up cycle by activating the PMIC_POWR_EN signal by taking it HI. When
powering down, the processor can take this pin low to start the power down process.

LDO_GOOD

This signal connects to the RTC_PORZn signal, RTC power on reset. The small n indicates that the signal is an
active low signal. Word processors seem to be unable to put a bar over a word so the **n* is commonly used
in electronics. As the RTC circuitry comes up first, this signal indicates that the LDOs, the 1.8V VRTC rail, is up
and stable. This starts the power up process.

PMIC_PGOOD

Once all the rails are up, the PMIC_PGOOD signal goes high. This releases the PORZn signal on the processor
which was holding the processor reset.

WAKEUP

The WAKEUP signal from the TPS65217C is connected to the EXT_WAKEUP signal on the processor. This is
used to wake up the processor when it is in a sleep mode. When an event is detected by the TPS65217C, such
as the power button being pressed, it generates this signal.

PMIC_INT

The PMIC_INT signal is an interrupt signal to the processor. Pressing the power button will send an interrupt to
the processor allowing it to implement a power down mode in an orderly fashion, go into sleep mode, or cause
it to wake up from a sleep mode. All of these require SW support.

Power Rails VRTC Rail

The VRTC rail is a 1.8V rail that is the first rail to come up in the power sequencing. It provides power to the
RTC domain on the processor and the I/O rail of the TPS65217C. It can deliver up to 250mA maximum.

VDD_3V3A Rail

The VDD_3V3A rail is supplied by the TPS65217C and provides the 3.3V for the processor rails and can provide
up to 400mA.

VDD_3V3B Rail

The current supplied by the VDD_3V3A rail is not sufficient to power all of the 3.3V rails on the board. So a
second LDO is supplied, U4, a TL5209A, which sources the VDD_3V3B rail. It is powered up just after the
VDD_3V3A rail.

VDD_1V8 Rail

The VDD_1V8 rail can deliver up to 400mA and provides the power required for the 1.8V rails on the processor
and the HDMI framer. This rail is not accessible for use anywhere else on the board.

VDD_CORE Rail

The VDD_CORE rail can deliver up to 1.2A at 1.1V. This rail is not accessible for use anywhere else on the board
and connects only to the processor. This rail is fixed at 1.1V and should not be adjusted by SW using the PMIC.
If you do, then the processor will no longer work.

VDD_MPU Rail

2.2. BeagleBone Black 55

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.25: Power Rails

56 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

The VDD_MPU rail can deliver up to 1.2A. This rail is not accessible for use anywhere else on the board and
connects only to the processor. This rail defaults to 1.1V and can be scaled up to allow for higher frequency
operation. Changing of the voltage is set via the I2C interface from the processor.

VDDS_DDR Rail

The VDDS_DDR rail defaults to**1.5V** to support the DDR3L rails and can deliver up to 1.2A. It is possible to
adjust this voltage rail down to 1.35V for lower power operation of the DDR3L device. Only DDR3L devices can
support this voltage setting of 1.35V.

Power Sequencing

The power up process is consists of several stages and events. figure-26 describes the events that make up
the power up process for the processor from the PMIC. This diagram is used elsewhere to convey additional
information. I saw no need to bust it up into smaller diagrams. It is from the processor datasheet supplied by
Texas Instruments.

Fig. 2.26: Power Rail Power Up Sequencing

figure-27 the voltage rail sequencing for the TPS65217C as it powers up and the voltages on each rail. The
power sequencing starts at 15 and then goes to one. That is the way the TPS65217C is configured. You can
refer to the TPS65217C datasheet for more information.

Power LED The power LED is a blue LED that will turn on once the TPS65217C has finished the power up
procedure. If you ever see the LED flash once, that means that the**TPS65217C** started the process and
encountered an issue that caused it to shut down. The connection of the LED is shown in figure-25.

TPS65217C Power Up Process Figure below shows the interface between the TPS65217C and the proces-
sor. It is a cut from the PDF form of the schematic and reflects what is on the schematic.

When voltage is applied, DC or USB, the TPS65217C connects the power to the SYS output pin which drives
the switchers and LDOs in the TPS65217C.

2.2. BeagleBone Black 57

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.27: TPS65217C Power Sequencing Timing

Fig. 2.28: Power Processor Interfaces

At power up all switchers and LDOs are off except for the VRTC LDO (1.8V), which provides power to the VRTC
rail and controls the RTC_PORZn input pin to the processor, which starts the power up process of the processor.
Once the RTC rail powers up, the RTC_PORZn pin, driven by the LDO_PGOOD signal from the TPS65217C, of
the processor is released.

Once the RTC_PORZn reset is released, the processor starts the initialization process. After the RTC stabilizes,
the processor launches the rest of the power up process by activating the PMIC_POWER_EN signal that is
connected to the TPS65217C which starts the TPS65217C power up process.

The LDO_PGOOD signal is provided by the**TPS65217C** to the processor. As this signal is 1.8V from the
TPS65217C by virtue of the TPS65217C VIO rail being set to 1.8V, and the RTC_PORZ signal on the processor
is 3.3V, a voltage level shifter, U4, is used. Once the LDOs and switchers are up on the TPS65217C, this signal
goes active releasing the processor. The LDOs on the TPS65217C are used to power the VRTC rail on the
processor.

Processor Control Interface figure-28 above shows two interfaces between the processor and the
TPS65217C used for control after the power up sequence has completed.

The first is the I2C0 bus. This allows the processor to turn on and off rails and to set the voltage levels of each
regulator to supports such things as voltage scaling.

The second is the interrupt signal. This allows the TPS65217C to alert the processor when there is an event,
such as when the power button is pressed. The interrupt is an open drain output which makes it easy to
interface to 3.3V of the processor.

Low Power Mode Support This section covers three general power down modes that are available. These
modes are only described from a Hardware perspective as it relates to the HW design.

RTC Only

58 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

In this mode all rails are turned off except the VDD_RTC. The processor will need to turn off all the rails to
enter this mode. The VDD_RTC staying on will keep the RTC active and provide for the wakeup interfaces to
be active to respond to a wake up event.

RTC Plus DDR

In this mode all rails are turned off except the VDD_RTC and the VDDS_DDR, which powers the DDR3L memory.
The processor will need to turn off all the rails to enter this mode. The VDD_RTC staying on will keep the RTC
active and provide for the wakeup interfaces to be active to respond to a wake up event.

The VDDS_DDR rail to the DDR3L is provided by the 1.5V rail of the TPS65217C and with VDDS_DDR active,
the DDR3L can be placed in a self refresh mode by the processor prior to power down which allows the memory
data to be saved.

Currently, this feature is not included in the standard software release. The plan is to include it in future
releases.

Voltage Scaling

For a mode where the lowest power is possible without going to sleep, this mode allows the voltage on the ARM
processor to be lowered along with slowing the processor frequency down. The I2C0 bus is used to control the
voltage scaling function in the TPS65217C.

Sitara AM3358BZCZ100 Processor

The board is designed to use the Sitara AM3358BZCZ100 processor in the 15 x 15 package. Earlier revisions
of the board used the XM3359AZCZ100 processor.

Description Figure below shows is a high level block diagram of the processor. For more information on the
processor, go to http://www.ti.com/product/am3358

High Level Features
Table 2.5: Processor Features

Operating Systems Linux, Android, Win-
dows Embedded
CE,QNX,ThreadX

MMC/SD 3

Standby Power 7 mW CAN 2
ARM CPU 1 ARM Cortex-A8 UART (SCI) 6
ARM MHz (Max.) 275,500,600,800,1000 ADC 8-ch 12-bit
ARM MIPS (Max.) 1000,1200,2000 PWM (Ch) 3
Graphics Acceleration 1 3D eCAP 3
Other Hardware Ac-
celeration

2 PRU-ICSS,Crypto Accelera-
tor

eQEP 3

On-Chip L1 Cache 64 KB (ARM Cortex-A8) RTC 1
On-Chip L2 Cache 256 KB (ARM Cortex- A8) I2C 3
Other On-Chip Mem-
ory

128 KB McASP 2

Display Options LCD SPI 2
General Purpose
Memory

1 16-bit (GPMC, NAND flash,
NOR Flash, SRAM)

DMA (Ch) 64-Ch EDMA

DRAM 1 16-bit (LPDDR-400,DDR2-
532, DDR3-400)

IO Supply (V) 1.8V(ADC), 3.3V

USB Ports 2 Operating Tempera-
ture Range (C)

40 to 90

2.2. BeagleBone Black 59

http://www.ti.com/product/am3358

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.29: Sitara AM3358BZCZ Block Diagram

60 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Documentation Full documentation for the processor can be found on the TI website at http://www.ti.com/
product/am3358 for the current processor used on the board. Make sure that you always use the latest
datasheets and Technical Reference Manuals (TRM).

Fig. 2.30: Processor Crystals

Crystal Circuitry

Reset Circuitry figure-31 is the board reset circuitry. The initial power on reset is generated by the
TPS65217C power management IC. It also handles the reset for the Real Time Clock.

The board reset is the SYS_RESETn signal. This is connected to the NRESET_INOUT pin of the processor. This
pin can act as an input or an output. When the reset button is pressed, it sends a warm reset to the processor
and to the system.

On the revision A5D board, a change was made. On power up, the NRESET_INOUT signal can act as an output.
In this instance it can cause the SYS_RESETn line to go high prematurely. In order to prevent this, the PORZn
signal from the TPS65217C is connected to the SYS_RESETn line using an open drain buffer. These ensure that
the line does not momentarily go high on power up.

This change is also in all revisions after A5D.

DDR3L Memory

The BeagleBone Black uses a single MT41K256M16HA-125 512MB DDR3L device from Micron that interfaces
to the processor over 16 data lines, 16 address lines, and 14 control lines. On rev C we added the Kingston
KE4CN2H5A-A58 device as a source for the DDR3L device**.**

The following sections provide more details on the design.

Memory Device The design supports the standard DDR3 and DDR3L x16 devices and is built using the
DDR3L. A single x16 device is used on the board and there is no support for two x8 devices. The DDR3 devices
work at 1.5V and the DDR3L devices can work down to

1.35V to achieve lower power. The DDR3L comes in a 96-BALL FBGA package with 0.8 mil pitch. Other standard
DDR3 devices can also be supported, but the DDR3L is the lower power device and was chosen for its ability
to work at 1.5V or 1.35V. The standard frequency that the DDR3L is run at on the board is 400MHZ.

DDR3L Memory Design figure-32 is the schematic for the DDR3L memory device. Each of the groups of
signals is described in the following lines.

Address Lines: Provide the row address for ACTIVATE commands, and the column address and auto pre-
charge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective
bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one bank

2.2. BeagleBone Black 61

http://www.ti.com/product/am3358
http://www.ti.com/product/am3358

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.31: Board Reset Circuitry

(A10 LOW, bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs also provide the op-code
during a LOAD MODE command. Address inputs are referenced to VREFCA. A12/BC#: When enabled in the
mode register (MR), A12 is sampled during READ and WRITE commands to determine whether burst chop
(on-the-fly) will be performed (HIGH = BL8 or no burst chop, LOW = BC4 burst chop).

Bank Address Lines: BA[2:0] define the bank to which an ACTIVATE, READ, WRITE, or PRECHARGE command
is being applied. BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is loaded during the LOAD
MODE command. BA[2:0] are referenced to VREFCA.

CK and CK# Lines: are differential clock inputs. All address and control input signals are sampled on the
crossing of the positive edge of CK and the negative edge of CK#. Output data strobe (DQS, DQS#) is referenced
to the crossings of CK and CK#.

Clock Enable Line: CKE enables (registered HIGH) and disables (registered LOW) internal circuitry and clocks
on the DRAM. The specific circuitry that is enabled/disabled is dependent upon the DDR3 SDRAM configuration
and operating mode. Taking CKE LOW provides PRECHARGE power-down and SELF REFRESH operations (all
banks idle) or active power-down (row active in any bank). CKE is synchronous for powerdown entry and exit
and for self refresh entry. CKE is asynchronous for self refresh exit. Input buffers (excluding CK, CK#, CKE,
RESET#, and ODT) are disabled during powerdown. Input buffers (excluding CKE and RESET#) are disabled
during SELF REFRESH. CKE is referenced to VREFCA.

Chip Select Line: CS# enables (registered LOW) and disables (registered HIGH) the command decoder. All
commands are masked when CS# is registered HIGH. CS# provides for external rank selection on systems with
multiple ranks. CS# is considered part of the command code. CS# is referenced to VREFCA.

Input Data Mask Line: DM is an input mask signal for write data. Input data is masked when DM is sampled
HIGH along with the input data during a write access. Although the DM ball is input-only, the DM loading is
designed to match that of the DQ and DQS balls. DM is referenced to VREFDQ.

On-die Termination Line: ODT enables (registered HIGH) and disables (registered LOW) termination resis-
tance internal to the DDR3L SDRAM. When enabled in normal operation, ODT is only applied to each of the
following balls: DQ[7:0], DQS, DQS#, and DM for the x8; DQ[3:0], DQS, DQS#, and DM for the x4. The ODT
input is ignored if disabled via the LOAD MODE command. ODT is referenced to VREFCA.

Power Rails The DDR3L memory device and the DDR3 rails on the processor are supplied by
the**TPS65217C**. Default voltage is 1.5V but can be scaled down to 1.35V if desired.

62 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.32: DDR3L Memory Design

2.2. BeagleBone Black 63

BeagleBoard Docs, Release 1.0.20230308-wip

VREF The VREF signal is generated from a voltage divider on the**VDDS_DDR** rail that powers the processor
DDR rail and the DDR3L device itself. Figure 33 below shows the configuration of this signal and the connection
to the DDR3L memory device and the processor.

Fig. 2.33: DDR3L VREF Design

4GB eMMC Memory

The eMMC is a communication and mass data storage device that includes a Multi-MediaCard (MMC) interface,
a NAND Flash component, and a controller on an advanced 11-signal bus, which is compliant with the MMC
system specification. The nonvolatile eMMC draws no power to maintain stored data, delivers high performance
across a wide range of operating temperatures, and resists shock and vibration disruption.

One of the issues faced with SD cards is that across the different brands and even within the same brand, per-
formance can vary. Cards use different controllers and different memories, all of which can have bad locations
that the controller handles. But the controllers may be optimized for reads or writes. You never know what you
will be getting. This can lead to varying rates of performance. The eMMC card is a known controller and when
coupled with the 8bit mode, 8 bits of data instead of 4, you get double the performance which should result in
quicker boot times.

The following sections describe the design and device that is used on the board to implement this interface.

eMMC Device The device used is one of two different devices:

• Micron MTFC4GLDEA 0M WT

• Kingston KE4CN2H5A-A58

The package is a 153 ball WFBGA device on both devices.

eMMC Circuit Design figure-34 is the design of the eMMC circuitry. The eMMC device is connected to the
MMC1 port on the processor. MMC0 is still used for the microSD card as is currently done on the original
BeagleBone. The size of the eMMC supplied is now 4GB.

The device runs at 3.3V both internally and the external I/O rails. The VCCI is an internal voltage rail to the
device. The manufacturer recommends that a 1uF capacitor be attached to this rail, but a 2.2uF was chosen
to provide a little margin.

Pullup resistors are used to increase the rise time on the signals to compensate for any capacitance on the
board.

The pins used by the eMMC1 in the boot mode are listed below in Table 6.

64 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.34: eMMC Memory Design

Fig. 2.35: eMMC Boot Pins

For eMMC devices the ROM will only support raw mode. The ROM Code reads out raw sectors from image or
the booting file within the file system and boots from it. In raw mode the booting image can be located at
one of the four consecutive locations in the main area: offset 0x0 / 0x20000 (128 KB) / 0x40000 (256 KB) /
0x60000 (384 KB). For this reason, a booting image shall not exceed 128KB in size. However it is possible to
flash a device with an image greater than 128KB starting at one of the aforementioned locations. Therefore
the ROM Code does not check the image size. The only drawback is that the image will cross the subsequent
image boundary. The raw mode is detected by reading sectors #0, #256, #512, #768. The content of these
sectors is then verified for presence of a TOC structure. In the case of a GP Device, a Configuration Header
(CH)*must* be located in the first sector followed by a GP header. The CH might be void (only containing a
CHSETTINGS item for which the Valid field is zero).

The ROM only supports the 4-bit mode. After the initial boot, the switch can bemade to 8-bit mode for increasing
the overall performance of the eMMC interface.

Board ID EEPROM

The BeagleBone is equipped with a single 32Kbit(4KB) 24LC32AT-I/OT EEPROM to allow the SW to identify the
board. Table 7 below defined the contents of the EEPROM.

Table 2.6: EEPROM Contents
Name Size (bytes) Contents
Header 4 0xAA, 0x55, 0x33, EE
Board Name 8 Name for board in ASCII: A335BNLT
Version 4 Hardware version code for board in ASCII: 00A3 for Rev A3, 00A4

for Rev A4, 00A5 for Rev A5, 00A6 for Rev A6,00B0 for Rev B,
and 00C0 for Rev C.

continues on next page

2.2. BeagleBone Black 65

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.6 – continued from previous page
Name Size (bytes) Contents
Serial Number 12 Serial number of the board. This is a 12 character string which is:

WWYY4P16nnnn where, WW = 2 digit week of the year of produc-
tion YY = 2 digit year of production BBBK = BeagleBone Black nnnn
= incrementing board number

Configuration Op-
tion

32 Codes to show the configuration setup on this board. All FF

RSVD 6 FF FF FF FF FF FF
RSVD 6 FF FF FF FF FF FF
RSVD 6 FF FF FF FF FF FF
Available 4018 Available space for other non-volatile codes/data

Fig. 2.36: EEPROM Design Rev A5

The EEPROM is accessed by the processor using the I2C 0 bus. TheWP pin is enabled by default. By grounding
the test point, the write protection is removed.

The first 48 locations should not be written to if you choose to use the extras storage space in the EEPROM for
other purposes. If you do, it could prevent the board from booting properly as the SW uses this information to
determine how to set up the board.

Micro Secure Digital

The microSD connector on the board will support a microSD card that can be used for booting or file storage
on the BeagleBone Black.

microSD Design The signals MMC0-3 are the data lines for the transfer of data between the processor and
the microSD connector.

The MMC0_CLK signal clocks the data in and out of the microSD card.

The MMCO_CMD signal indicates that a command versus data is being sent.

There is no separate card detect pin in the microSD specification. It uses MMCO_DAT3 for that function. How-
ever, most microSD connectors still supply a CD function on the connectors. In the BeagleBone Black design,
this pin is connected to theMMC0_SDCD pin for use by the processor. You can also change the pin to GPIO0_6,
which is able to wake up the processor from a sleep mode when an microSD card is inserted into the connector.

Pullup resistors are provided on the signals to increase the rise times of the signals to overcome PCB capaci-
tance.

Power is provided from the VDD_3V3B rail and a 10uF capacitor is provided for filtering.

66 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.37: microSD Design

6.6 User LEDs

There are four user LEDs on the BeagleBone Black. These are connected to GPIO pins on the processor. Figure
37 shows the interfaces for the user LEDs.

Fig. 2.38: User LEDs

Resistors R71-R74 were changed to 4.75K on the revision A5B and later boards.

Table 2.7: User LED Control Signals/Pins
LED GPIO SIGNAL PROC PIN
USR0 GPIO1_21 V15
USR1 GPIO1_22 U15
USR2 GPIO1_23 T15
USR3 GPIO1_24 V16

A logic level of “1” will cause the LEDs to turn on.

2.2. BeagleBone Black 67

BeagleBoard Docs, Release 1.0.20230308-wip

Boot Configuration

The design supports two groups of boot options on the board. The user can switch between these modes via
the Boot button. The primary boot source is the onboard eMMC device. By holding the Boot button, the user
can force the board to boot from the microSD slot. This enables the eMMC to be overwritten when needed or
to just boot an alternate image. The following sections describe how the boot configuration works.

In most applications, including those that use the provided demo distributions available from beagleboard.org
the processor-external boot code is composed of two stages. After the primary boot code in the processor ROM
passes control, a secondary stage (secondary program loader – “SPL” or “MLO”) takes over. The SPL stage
initializes only the required devices to continue the boot process, and then control is transferred to the third
stage “U-boot”. Based on the settings of the boot pins, the ROM knows where to go and get the SPL and UBoot
code. In the case of the BeagleBone Black, that is either eMMC or microSD based on the position of the boot
switch.

Boot Configuration Design figure-38 shows the circuitry that is involved in the boot configuration process.
On power up, these pins are read by the processor to determine the boot order. S2 is used to change the level
of one bit from HI to LO which changes the boot order.

Fig. 2.39: Processor Boot Configuration Design

It is possible to override these setting via the expansion headers. But be careful not to add too much load such
that it could interfere with the operation of the HDMI interface or LCD panels. If you choose to override these
settings, it is strongly recommended that you gate these signals with the SYS_RESETn signal. This ensures that
after coming out of reset these signals are removed from the expansion pins.

Default Boot Options

Based on the selected option found in figure-39 below, each of the boot sequences for each of the two settings
is shown.

The first row in «figure-39» is the default setting. On boot, the processor will look for the eMMC on the MMC1
port first, followed by the microSD slot on MMC0, USB0 and UART0. In the event there is no microSD card and
the eMMC is empty, UART0 or USB0 could be used as the board source.

68 Chapter 2. Boards

http://beagleboard.org/

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.40: Processor Boot Configuration

If you have a microSD card from which you need to boot from, hold the boot button down. On boot, the
processor will look for the SPIO0 port first, then microSD on the MMC0 port, followed by USB0 and UART0. In
the event there is no microSD card and the eMMC is empty, USB0 or UART0 could be used as the board source.

10/100 Ethernet

The BeagleBone Black is equipped with a 10/100 Ethernet interface. It uses the same PHY as is used on the
original BeagleBone. The design is described in the following sections.

Fig. 2.41: Ethernet Processor Interface

6.9.1 Ethernet Processor Interface This is the same interface as is used on the BeagleBone. No changes
were made in this design for the board.

Ethernet Connector Interface The off board side of the PHY connections are shown in Figure 41 below.

This is the same interface as is used on the BeagleBone. No changes were made in this design for the board.

Ethernet PHY Power, Reset, and Clocks VDD_3V3B Rail

The VDD_3V3B rail is the main power rail for the LAN8710A. It originates at the VD_3V3B regulator and is the
primary rail that supports all of the peripherals on the board. This rail also supplies the VDDIO rails which set
the voltage levels for all of the I/O signals between the processor and the**LAN8710A**.

2.2. BeagleBone Black 69

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.42: Ethernet Connector Interface

Fig. 2.43: Ethernet PHY, Power, Reset, and Clocks

70 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

VDD_PHYA Rail

A filtered version of VDD_3V3B rail is connected to the VDD rails of the LAN8710 and the termination resistors
on the Ethernet signals. It is labeled as VDD_PHYA. The filtering inductor helps block transients that may be
seen on the VDD_3V3B rail.

PHY_VDDCR Rail

The PHY_VDDCR rail originates inside the LAN8710A. Filter and bypass capacitors are used to filter the rail.
Only circuitry inside the LAN8710A uses this rail.

SYS_RESET

The reset of the LAN8710A is controlled via the SYS_RESETn signal, the main board reset line.

Clock Signals

A crystal is used to create the clock for the LAN8710A. The processor uses the RMII_RXCLK signal to provide
the clocking for the data between the processor and the LAN8710A.

LAN8710A Mode Pins

There are mode pins on the LAN8710A that sets the operational mode for the PHY when coming out of reset.
These signals are also used to communicate between the processor and the LAN8710A. As a result, these
signals can be driven by the processor which can cause the PHY not to be initialized correctly. To ensure that
this does not happen, three low value pull up resistors are used. Figure 43 below shows the three mode pin
resistors.

Fig. 2.44: Ethernet PHY Mode Pins

This will set the mode to be 111, which enables all modes and enables auto-negotiation.

HDMI Interface

The BeagleBone Black has an onboard HDMI framer that converts the LCD signals and audio signals to drive a
HDMI monitor. The design uses an NXP TDA19988 HDMI Framer.

The following sections provide more detail into the design of this interface.

2.2. BeagleBone Black 71

BeagleBoard Docs, Release 1.0.20230308-wip

Supported Resolutions Themaximum resolution supported by the BeagleBone Black is 1280x1024@ 60Hz.
Table 9 below shows the supported resolutions. Not all resolutions may work on all monitors, but these have
been tested and shown to work on at least one monitor. EDID is supported on the BeagleBone Black. Based
on the EDID reading from the connected monitor, the highest compatible resolution is selected.

Table 2.8: HDMI Supported Monitor Resolutions
RESOLUTION AUDIO

800 x 600 @60Hz
800 x 600 @56Hz
640 x 480 @75Hz
640 x 480 @60Hz YES
720 x 400 @70Hz
1280 x 1024 @75Hz
1024 x 768 @75Hz
1024 x 768 @70Hz
1024 x 768 @60Hz
800 x 600 @75Hz
800 x 600 @72Hz
720 x 480 @60Hz YES
1280 x 720 @60Hz YES
1920 x 1080 @24Hz YES

NOTE: The updated software image used on the Rev A5B and later boards added support for 1920x1080@24HZ.

Audio is limited to CEA supported resolutions. LCD panels only activate the audio in CEA modes. This is a
function of the specification and is not something that can be fixed on the board via a hardware change or a
software change.

HDMI Framer The TDA19988 is a High-Definition Multimedia Interface (HDMI) 1.4a transmitter. It is backward
compatible with DVI 1.0 and can be connected to any DVI 1.0 or HDMI sink. The HDCP mode is not used in the
design. The non-HDCP version of the device is used in the BeagleBone Black design.

This device provides additional embedded features like CEC (Consumer Electronic Control). CEC is a single
bidirectional bus that transmits CEC over the home appliance network connected through this bus. This elimi-
nates the need of any additional device to handle this feature. While this feature is supported in this device, as
of this point, the SW to support this feature has not been implemented and is not a feature that is considered
critical. It can be switched to very low power Standby or Sleep modes to save power when HDMI is not used.
TDA19988 embeds I~2~C-bus master interface for DDC-bus communication to read EDID. This device can be
controlled or configured via I~2~C-bus interface.

HDMI Video Processor Interface The Figure 44 shows the connections between the processor and the
HDMI framer device. There are 16 bits of display data, 5-6-5 that is used to drive the framer. The reason for 16
bits is that allows for compatibility with display and LCD capes already available on the original BeagleBone.
The unused bits on the TDA19988 are tied low. In addition to the data signals are the VSYNC, HSYNC, DE, and
PCLK signals that round out the video interface from the processor.

HDMI Control Processor Interface In order to use the TDA19988, the processor needs to setup the device.
This is done via the I2C interface between the processor and the TDA19988. There are two signals on the
TDA19988 that could be used to set the address of the TDA19988. In this design they are both tied low. The
I2C interface supports both 400kHz and 100KhZ operation. Table 10 shows the I2C address.

Interrupt Signal There is a HDMI_INT signal that connects from the TDA19988 to the processor. This signal
can be used to alert the processor in a state change on the HDMI interface.

72 Chapter 2. Boards

mailto:1920x1080@24HZ

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.45: HDMI Framer Processor Interface

Fig. 2.46: TDA19988 I2C Address

2.2. BeagleBone Black 73

BeagleBoard Docs, Release 1.0.20230308-wip

Audio Interface There is an I2S audio interface between the processor and the TDA19988. Stereo audio
can be transported over the HDMI interface to an audio equipped display. In order to create the required
clock frequencies, an external 24.576MHz oscillator,*Y4*, is used. From this clock, the processor generates the
required clock frequencies for the TDA19988.

There are three signals used to pass data from the processor to the TDA19988. SCLK is the serial clock.
SPI1_CS0 is the data pin to the TDA199888. SPI1_D0 is the word sync pin. These signals are configured as
I2S interfaces.

Audio is limited to CEA supported resolutions. LCD panels only activate the audio in CEA modes. This is a
function of the specification and is not something that can be fixed on the board via a hardware change or a
software change.

In order to create the correct clock frequencies, we had to add an external 24.576MHz oscillator. Unfortunately
this had to be input into the processor using the pin previously used for GPIO3_21. In order to keep GPIO3_21
functionality, we provided a way to disable the oscillator if the need was there to use the pin on the expansion
header. Figure 45 shows the oscillator circuitry.

Fig. 2.47: 24.576MHZ Oscillator

Power Connections figure-46 shows the power connections to the TDA19988 device. All voltage rails for
the device are at 1.8V. A filter is provided to minimize any noise from the 1.8V rail getting back into the device.

Fig. 2.48: HDMI Power Connections

All of the interfaces between the processor and the TDA19988 are 3.3V tolerant allowing for direct connection.

74 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

HDMI Connector Interface figure-47 shows the design of the interface between the HDMI Framer and the
connector.

Fig. 2.49: Connector Interface Circuitry

The connector for the HDMI interface is a microHDMI. It should be noted that this connector has a different
pinout than the standard or mini HDMI connectors. D6 and D7 are ESD protection devices.

USB Host

The board is equipped with a single USB host interface accessible from a single USB Type A female connector.
«figure-48» is the design of the USB Host circuitry.

Power Switch U8 is a switch that allows the power to the connector to be turned on or off by the processor. It
also has an over current detection that can alert the processor if the current gets too high via the**USB1_OC**
signal. The power is controlled by the USB1_DRVBUS signal from the processor.

ESD Protection U9 is the ESD protection for the signals that go to the connector.

Filter Options FB7 and**FB8** were added to assist in passing the FCC emissions test. The USB1_VBUS
signal is used by the processor to detect that the 5V is present on the connector. FB7 is populated and FB8 is
replaced with a .1 ohm resistor.

PRU-ICSS

The PRU-ICSSmodule is located inside the AM3358 processor. Access to these pins is provided by the expansion
headers and is multiplexed with other functions on the board. Access is not provided to all of the available

2.2. BeagleBone Black 75

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.50: USB Host circuit

pins.

All documentation is located at http://github.com/beagleboard/am335x_pru_package_

This feature is not supported by Texas Instruments.

PRU-ICSS Features The features of the PRU-ICSS include:

Two independent programmable real-time (PRU) cores:

• 32-Bit Load/Store RISC architecture

• 8K Byte instruction RAM (2K instructions) per core

• 8K Bytes data RAM per core

• 12K Bytes shared RAM

• Operating frequency of 200 MHz

• PRU operation is little endian similar to ARM processor

• All memories within PRU-ICSS support parity

• Includes Interrupt Controller for system event handling

• Fast I/O interface

16 input pins and 16 output pins per PRU core. (Not all of these are accessible on the BeagleBone Black).

PRU-ICSS Block Diagram

PRU-ICSS Pin Access Both PRU 0 and PRU1 are accessible from the expansion headers. Some may not be
usable without first disabling functions on the board like LCD for example. Listed below is what ports can be
accessed on each PRU.

• 8 outputs or 9 inputs

• 13 outputs or 14 inputs

• UART0_TXD, UART0_RXD, UART0_CTS, UART0_RTS

Table 2.9: P8 PRU0 and PRU1 Access
PIN PROC NAME
11 R12 GPIO1_13 pr1_pru0_pru_r30_15

(Output)
continues on next page

76 Chapter 2. Boards

http://github.com/beagleboard/am335x_pru_package

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.9 – continued from previous page
PIN PROC NAME
12 T12 GPIO1_12 pr1_pru0_pru_r30_14

(Output)
15 U13 GPIO1_15 pr1_pru0_pru_r31_15

(Input)
16 V13 GPIO1_14 pr1_pru0_pru_r31_14

(Input)
20 V9 GPIO1_31 pr1_pru1_pru_r30_13

(Output)
pr1_pru1_pru_r31_13
(INPUT)

21 U9 GPIO1_30 pr1_pru1_pru_r30_12
(Output)

pr1_pru1_pru_r31_12
(INPUT)

27 U5 GPIO2_22 pr1_pru1_pru_r30_8
(Output)

pr1_pru1_pru_r31_8
(INPUT)

28 V5 GPIO2_24 pr1_pru1_pru_r30_10
(Output)

pr1_pru1_pru_r31_10
(INPUT)

29 R5 GPIO2_23 pr1_pru1_pru_r30_9
(Output)

pr1_pru1_pru_r31_9
(INPUT)

39 T3 GPIO2_12 pr1_pru1_pru_r30_6
(Output)

pr1_pru1_pru_r31_6
(INPUT)

40 T4 GPIO2_13 pr1_pru1_pru_r30_7
(Output)

pr1_pru1_pru_r31_7
(INPUT)

41 T1 GPIO2_10 pr1_pru1_pru_r30_4
(Output)

pr1_pru1_pru_r31_4
(INPUT)

42 T2 GPIO2_11 pr1_pru1_pru_r30_5
(Output)

pr1_pru1_pru_r31_5
(INPUT)

43 R3 GPIO2_8 pr1_pru1_pru_r30_2
(Output)

pr1_pru1_pru_r31_2
(INPUT)

44 R4 GPIO2_9 pr1_pru1_pru_r30_3
(Output)

pr1_pru1_pru_r31_3
(INPUT)

45 R1 GPIO2_6 pr1_pru1_pru_r30_0
(Output)

pr1_pru1_pru_r31_0
(INPUT)

46 R2 GPIO2_7 pr1_pru1_pru_r30_1
(Output)

pr1_pru1_pru_r31_1
(INPUT)

Table 2.10: P9 PRU0 and PRU1 Access
PIN PROC NAME
17 A16 I2C1_SCL pr1_uart0_txd
18 B16 I2C1_SDA pr1_uart0_rxd
19 D17 I2C2_SCL pr1_uart0_rts_n
20 D18 I2C2_SDA pr1_uart0_cts_n
21 B17 UART2_TXD pr1_uart0_rts_n
22 A17 UART2_RXD pr1_uart0_cts_n
24 D15 UART1_TXD pr1_uart0_txd pr1_pru0_pru_r31_16

(Input)
25 A14 GPIO3_21 pr1_pru0_pru_r30_5

(Output)
pr1_pru0_pru_r31_5
(Input)

26 D16 UART1_RXD pr1_uart0_rxd pr1_pru1_pru_r31_16
27 C13 GPIO3_19 pr1_pru0_pru_r30_7

(Output)
pr1_pru0_pru_r31_7
(Input)

28 C12 SPI1_CS0 eCAP2_in_PWM2_out pr1_pru0_pru_r30_3
(Output)

pr1_pru0_pru_r31_3
(Input)

29 B13 SPI1_D0 pr1_pru0_pru_r30_1
(Output)

pr1_pru0_pru_r31_1
(Input)

continues on next page

2.2. BeagleBone Black 77

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.10 – continued from previous page
PIN PROC NAME
30 D12 SPI1_D1 pr1_pru0_pru_r30_2

(Output)
pr1_pru0_pru_r31_2
(Input)

31 A13 SPI1_SCLK pr1_pru0_pru_r30_0
(Output)

pr1_pru0_pru_r31_0
(Input)

Note: GPIO3_21 is also the 24.576MHZ clock input to the processor to enable HDMI audio. To use this pin the
oscillator must be disabled.

2.2.7 Connectors

This section describes each of the connectors on the board.

Expansion Connectors

The expansion interface on the board is comprised of two 46 pin connectors. All signals on the expansion
headers are _3.3V_ unless otherwise indicated.

NOTE: Do not connect 5V logic level signals to these pins or the board will be damaged.

NOTE: DO NOT APPLY VOLTAGE TO ANY I/O PINWHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

The location and spacing of the expansion headers are the same as on the original BeagleBone.

Connector P8 table-12 shows the pinout of the P8 expansion header. Other signals can be connected to
this connector based on setting the pin mux on the processor, but this is the default settings on power up. The
SW is responsible for setting the default function of each pin. There are some signals that have not been listed
here. Refer to the processor documentation for more information on these pins and detailed descriptions of all
of the pins listed. In some cases there may not be enough signals to complete a group of signals that may be
required to implement a total interface.

The PROC column is the pin number on the processor.

The PIN column is the pin number on the expansion header.

The MODE columns are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

NOTE: DO NOT APPLY VOLTAGE TO ANY I/O PINWHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

78 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.51: PRU-ICSS Block Diagram

Fig. 2.52: Expansion Connector Location

2.2. BeagleBone Black 79

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
bl
e
2.
11
:
Ex
pa
ns
io
n
He
ad
er
P8
Pi
no
ut

PI
N

PR
OC

NA
M
E

M
OD
E0

M
OD
E1

M
OD
E2

M
OD
E3

M
OD
E4

M
OD
E5

M
OD
E6

M
OD
E7

1,
2

G
ND

3
R9

G
PI
O
1_
6

gp
m
c_
ad
6

m
m
c1
_d
at
6

gp
io
1[
6]

4
T9

G
PI
O
1_
7

gp
m
c_
ad
7

m
m
c1
_d
at
7

gp
io
1[
7]

5
R8

G
PI
O
1_
2

gp
m
c_
ad
2

m
m
c1
_d
at
2

gp
io
1[
2]

6
T8

G
PI
O
1_
3

gp
m
c_
ad
3

m
m
c1
_d
at
3

gp
io
1[
3]

7
R7

TI
M
ER
4

gp
m
c_
ad
vn
_a
le

tim
er
4

gp
io
2[
2]

8
T7

TI
M
ER
7

gp
m
c_
oe
n_
re
n

tim
er
7

gp
io
2[
3]

9
T6

TI
M
ER
5

gp
m
c_
be
0n
_c
le

tim
er
5

gp
io
2[
5]

10
U6

TI
M
ER
6

gp
m
c_
w
en

tim
er
6

gp
io
2[
4]

11
R1
2

G
PI
O
1_
13

gp
m
c_
ad
13

lc
d_
da
ta
18

m
m
c1
_d
at
5

m
m
c2
_d
at
1

eQ
EP
2B
_i
n

pr
1_
pr
u0
_p
ru
_r
30
_1
5

gp
io
1[
13
]

12
T1
2

G
PI
O
1_
12

gp
m
c_
ad
12

lc
d_
da
ta
19

m
m
c1
_d
at
4

m
m
c2
_d
at
0

eQ
EP
2a
_i
n

pr
1_
pr
u0
_p
ru
_r
30
_1
4

gp
io
1[
12
]

13
T1
0

EH
RP
W
M
2B

gp
m
c_
ad
9

lc
d_
da
ta
22

m
m
c1
_d
at
1

m
m
c2
_d
at
5

eh
rp
w
m
2B

gp
io
0[
23
]

14
T1
1

G
PI
O
0_
26

gp
m
c_
ad
10

lc
d_
da
ta
21

m
m
c1
_d
at
2

m
m
c2
_d
at
6

eh
rp
w
m
2_
tr
ip
zo
ne
_i
n

gp
io
0[
26
]

15
U1
3

G
PI
O
1_
15

gp
m
c_
ad
15

lc
d_
da
ta
16

m
m
c1
_d
at
7

m
m
c2
_d
at
3

eQ
EP
2_
st
ro
be

pr
1_
pr
u0
_p
ru
_r
31
_1
5

gp
io
1[
15
]

16
V1
3

G
PI
O
1_
14

gp
m
c_
ad
14

lc
d_
da
ta
17

m
m
c1
_d
at
6

m
m
c2
_d
at
2

eQ
EP
2_
in
de
x

pr
1_
pr
u0
_p
ru
_r
31
_1
4

gp
io
1[
14
]

17
U1
2

G
PI
O
0_
27

gp
m
c_
ad
11

lc
d_
da
ta
20

m
m
c1
_d
at
3

m
m
c2
_d
at
7

eh
rp
w
m
0_
sy
nc
o

gp
io
0[
27
]

18
V1
2

G
PI
O
2_
1

gp
m
c_
cl
k_
m
ux
0

lc
d_
m
em
or
y_
cl
k

gp
m
c_
w
ai
t1

m
m
c2
_c
lk

m
ca
sp
0_
fs
r

gp
io
2[
1]

19
U1
0

EH
RP
W
M
2A

gp
m
c_
ad
8

lc
d_
da
ta
23

m
m
c1
_d
at
0

m
m
c2
_d
at
4

eh
rp
w
m
2A

gp
io
0[
22
]

20
V9

G
PI
O
1_
31

gp
m
c_
cs
n2

gp
m
c_
be
1n

m
m
c1
_c
m
d

pr
1_
pr
u1
_p
ru
_r
30
_1
3

pr
1_
pr
u1
_p
ru
_r
31
_1
3

gp
io
1[
31
]

21
U9

G
PI
O
1_
30

gp
m
c_
cs
n1

gp
m
c_
cl
k

m
m
c1
_c
lk

pr
1_
pr
u1
_p
ru
_r
30
_1
2

pr
1_
pr
u1
_p
ru
_r
31
_1
2

gp
io
1[
30
]

22
V8

G
PI
O
1_
5

gp
m
c_
ad
5

m
m
c1
_d
at
5

gp
io
1[
5]

23
U8

G
PI
O
1_
4

gp
m
c_
ad
4

m
m
c1
_d
at
4

gp
io
1[
4]

24
V7

G
PI
O
1_
1

gp
m
c_
ad
1

m
m
c1
_d
at
1

gp
io
1[
1]

25
U7

G
PI
O
1_
0

gp
m
c_
ad
0

m
m
c1
_d
at
0

gp
io
1[
0]

26
V6

G
PI
O
1_
29

gp
m
c_
cs
n0

gp
io
1[
29
]

27
U5

G
PI
O
2_
22

lc
d_
vs
yn
c

gp
m
c_
a8

pr
1_
pr
u1
_p
ru
_r
30
_8

pr
1_
pr
u1
_p
ru
_r
31
_8

gp
io
2[
22
]

28
V5

G
PI
O
2_
24

lc
d_
pc
lk

gp
m
c_
a1
0

pr
1_
pr
u1
_p
ru
_r
30
_1
0

pr
1_
pr
u1
_p
ru
_r
31
_1
0

gp
io
2[
24
]

29
R5

G
PI
O
2_
23

lc
d_
hs
yn
c

gp
m
c_
a9

pr
1_
pr
u1
_p
ru
_r
30
_9

pr
1_
pr
u1
_p
ru
_r
31
_9

gp
io
2[
23
]

30
R6

G
PI
O
2_
25

lc
d_
ac
_b
ia
s_
en

gp
m
c_
a1
1

gp
io
2[
25
]

31
V4

UA
RT
5_
CT
SN

lc
d_
da
ta
14

gp
m
c_
a1
8

eQ
EP
1_
in
de
x

m
ca
sp
0_
ax
r1

ua
rt
5_
rx
d

ua
rt
5_
ct
sn

gp
io
0[
10
]

32
T5

UA
RT
5_
RT
SN

lc
d_
da
ta
15

gp
m
c_
a1
9

eQ
EP
1_
st
ro
be

m
ca
sp
0_
ah
cl
kx

m
ca
sp
0_
ax
r3

ua
rt
5_
rt
sn

gp
io
0[
11
]

33
V3

UA
RT
4_
RT
SN

lc
d_
da
ta
13

gp
m
c_
a1
7

eQ
EP
1B
_i
n

m
ca
sp
0_
fs
r

m
ca
sp
0_
ax
r3

ua
rt
4_
rt
sn

gp
io
0[
9]

34
U4

UA
RT
3_
RT
SN

lc
d_
da
ta
11

gp
m
c_
a1
5

eh
rp
w
m
1B

m
ca
sp
0_
ah
cl
kr

m
ca
sp
0_
ax
r2

ua
rt
3_
rt
sn

gp
io
2[
17
]

35
V2

UA
RT
4_
CT
SN

lc
d_
da
ta
12

gp
m
c_
a1
6

eQ
EP
1A
_i
n

m
ca
sp
0_
ac
lk
r

m
ca
sp
0_
ax
r2

ua
rt
4_
ct
sn

gp
io
0[
8]

36
U3

UA
RT
3_
CT
SN

lc
d_
da
ta
10

gp
m
c_
a1
4

eh
rp
w
m
1A

m
ca
sp
0_
ax
r0

ua
rt
3_
ct
sn

gp
io
2[
16
]

37
U1

UA
RT
5_
TX
D

lc
d_
da
ta
8

gp
m
c_
a1
2

eh
rp
w
m
1_
tr
ip
zo
ne
_i
n

m
ca
sp
0_
ac
lk
x

ua
rt
5_
tx
d

ua
rt
2_
ct
sn

gp
io
2[
14
]

38
U2

UA
RT
5_
RX
D

lc
d_
da
ta
9

gp
m
c_
a1
3

eh
rp
w
m
0_
sy
nc
o

m
ca
sp
0_
fs
x

ua
rt
5_
rx
d

ua
rt
2_
rt
sn

gp
io
2[
15
]

39
T3

G
PI
O
2_
12

lc
d_
da
ta
6

gp
m
c_
a6

eQ
EP
2_
in
de
x

pr
1_
pr
u1
_p
ru
_r
30
_6

pr
1_
pr
u1
_p
ru
_r
31
_6

gp
io
2[
12
]

40
T4

G
PI
O
2_
13

lc
d_
da
ta
7

gp
m
c_
a7

eQ
EP
2_
st
ro
be

pr
1_
ed
io
_d
at
a_
ou
t7

pr
1_
pr
u1
_p
ru
_r
30
_7

pr
1_
pr
u1
_p
ru
_r
31
_7

gp
io
2[
13
]

41
T1

G
PI
O
2_
10

lc
d_
da
ta
4

gp
m
c_
a4

eQ
EP
2A
_i
n

pr
1_
pr
u1
_p
ru
_r
30
_4

pr
1_
pr
u1
_p
ru
_r
31
_4

gp
io
2[
10
]

42
T2

G
PI
O
2_
11

lc
d_
da
ta
5

gp
m
c_
a5

eQ
EP
2B
_i
n

pr
1_
pr
u1
_p
ru
_r
30
_5

pr
1_
pr
u1
_p
ru
_r
31
_5

gp
io
2[
11
]

43
R3

G
PI
O
2_
8

lc
d_
da
ta
2

gp
m
c_
a2

eh
rp
w
m
2_
tr
ip
zo
ne
_i
n

pr
1_
pr
u1
_p
ru
_r
30
_2

pr
1_
pr
u1
_p
ru
_r
31
_2

gp
io
2[
8]

44
R4

G
PI
O
2_
9

lc
d_
da
ta
3

gp
m
c_
a3

eh
rp
w
m
0_
sy
nc
o

pr
1_
pr
u1
_p
ru
_r
30
_3

pr
1_
pr
u1
_p
ru
_r
31
_3

gp
io
2[
9]

45
R1

G
PI
O
2_
6

lc
d_
da
ta
0

gp
m
c_
a0

eh
rp
w
m
2A

pr
1_
pr
u1
_p
ru
_r
30
_0

pr
1_
pr
u1
_p
ru
_r
31
_0

gp
io
2[
6]

46
R2

G
PI
O
2_
7

lc
d_
da
ta
1

gp
m
c_
a1

eh
rp
w
m
2B

pr
1_
pr
u1
_p
ru
_r
30
_1

pr
1_
pr
u1
_p
ru
_r
31
_1

gp
io
2[
7]

80 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Connector P9 Table-13 lists the signals on connector P9. Other signals can be connected to this connector
based on setting the pin mux on the processor, but this is the default settings on power up.

There are some signals that have not been listed here. Refer to the processor documentation for more infor-
mation on these pins and detailed descriptions of all of the pins listed. In some cases there may not be enough
signals to complete a group of signals that may be required to implement a total interface.

The PROC column is the pin number on the processor.

The PIN column is the pin number on the expansion header.

The MODE columns are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

NOTES:

In the table are the following notations:

PWR_BUT is a 5V level as pulled up internally by the TPS65217C. It is activated by pulling the signal to GND.

NOTE: DO NOT APPLY VOLTAGE TO ANY I/O PINWHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

• Both of these signals connect to pin 41 of P11. Resistors are installed that allow for the GPIO3_20 con-
nection to be removed by removing R221. The intent is to allow the SW to use either of these signals,
one or the other, on pin 41. SW should set the unused pin in input mode when using the other pin. This
allowed us to get an extra signal out to the expansion header.

• Both of these signals connect to pin 42 of P11. Resistors are installed that allow for the GPIO3_18 con-
nection to be removed by removing R202. The intent is to allow the SW to use either of these signals,
on pin 42. SW should set the unused pin in input mode when using the other pin. This allowed us to get
an extra signal out to the expansion header.

2.2. BeagleBone Black 81

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
bl
e
2.
12
:
Ex
pa
ns
io
n
He
ad
er
P9
Pi
no
ut

PI
N

PR
OC

NA
M
E

M
OD
E0

M
OD
E1

M
OD
E2

M
OD
E3

M
OD
E4

M
OD
E5

M
OD
E6

M
OD
E7

1,
2

G
N
D

3,
4

D
C_
3.
3V

5,
6

V
D
D
_5
V

7,
8

SY
S_
5V

9
PW

R
_B
U
T

10
A
10

SY
S_
R
ES

ET
n

11
T1

7
U
A
RT

4_
R
X
D

gp
m
c_
w
ai
t0

m
ii2
_c
rs

gp
m
c_
cs
n4

rm
ii2
_c
rs
_d
v

m
m
c1
_s
dc
d

ua
rt
4_
rx
d_
m
ux
2

gp
io
0[
30
]

12
U
18

G
PI
O
1_
28

gp
m
c_
be
1n

m
ii2
_c
ol

gp
m
c_
cs
n6

m
m
c2
_d
at
3

gp
m
c_
di
r

m
ca
sp
0_
ac
lk
r_
m
ux
3

gp
io
1[
28
]

13
U
17

U
A
RT

4_
TX

D
gp
m
c_
w
pn

m
ii_
rx
er
r

gp
m
c_
cs
n5

rm
ii2
_r
xe
rr

m
m
c2
_s
dc
d

ua
rt
4_
tx
d_
m
ux
2

gp
io
0[
31
]

14
U
14

EH
R
PW

M
1A

gp
m
c_
a2

m
ii2
_t
xd
3

rg
m
ii2
_t
d3

m
m
c2
_d
at
1

gp
m
c_
a1
8

eh
rp
w
m
1A
_m
ux
1

gp
io
1[
18
]

15
R
13

G
PI
O
1_
16

gp
m
c_
a0

gm
ii2
_t
xe
n

rm
ii2
_t
ct
l

m
ii2
_t
xe
n

gp
m
c_
a1
6

eh
rp
w
m
1_
tr
ip
zo
ne
_i
np
ut

gp
io
1[
16
]

16
T1

4
EH

R
PW

M
1B

gp
m
c_
a3

m
ii2
_t
xd
2

rg
m
ii2
_t
d2

m
m
c2
_d
at
2

gp
m
c_
a1
9

eh
rp
w
m
1B
_m
ux
1

gp
io
1[
19
]

17
A
16

I2
C1

_S
CL

sp
i0
_c
s0

m
m
c2
_s
dw
p

I2
C1
_S
CL

eh
rp
w
m
0_
sy
nc
i

pr
1_
ua
rt
0_
tx
d

gp
io
0[
5]

18
B
16

I2
C1

_S
D
A

sp
i0
_d
1

m
m
c1
_s
dw
p

I2
C1
_S
DA

eh
rp
w
m
0_
tr
ip
zo
ne

pr
1_
ua
rt
0_
rx
d

gp
io
0[
4]

19
D
17

I2
C2

_S
CL

ua
rt
1_
rt
sn

tim
er
5

dc
an
0_
rx

I2
C2
_S
CL

sp
i1
_c
s1

pr
1_
ua
rt
0_
rt
s_
n

gp
io
0[
13
]

20
D
18

I2
C2

_S
D
A

ua
rt
1_
ct
sn

tim
er
6

dc
an
0_
tx

I2
C2
_S
DA

sp
i1
_c
s0

pr
1_
ua
rt
0_
ct
s_
n

gp
io
0[
12
]

21
B
17

U
A
RT

2_
TX

D
sp
i0
_d
0

ua
rt
2_
tx
d

I2
C2
_S
CL

eh
rp
w
m
0B

pr
1_
ua
rt
0_
rt
s_
n

EM
U3
_m
ux
1

gp
io
0[
3]

22
A
17

U
A
RT

2_
R
X
D

sp
i0
_s
cl
k

ua
rt
2_
rx
d

I2
C2
_S
DA

eh
rp
w
m
0A

pr
1_
ua
rt
0_
ct
s_
n

EM
U2
_m
ux
1

gp
io
0[
2]

23
V
14

G
PI
O
1_
17

gp
m
c_
a1

gm
ii2
_r
xd
v

rg
m
ii2
_r
xd
v

m
m
c2
_d
at
0

gp
m
c_
a1
7

eh
rp
w
m
0_
sy
nc
o

gp
io
1[
17
]

24
D
15

U
A
RT

1_
TX

D
ua
rt
1_
tx
d

m
m
c2
_s
dw
p

dc
an
1_
rx

I2
C1
_S
CL

pr
1_
ua
rt
0_
tx
d

pr
1_
pr
u0
_p
ru
_r
31
_1
6

gp
io
0[
15
]

25
A
14

G
PI
O
3_
21

m
ca
sp
0_
ah
cl
kx

eQ
EP
0_
st
ro
be

m
ca
sp
0_
ax
r3

m
ca
sp
1_
ax
r1

EM
U4
_m
ux
2

pr
1_
pr
u0
_p
ru
_r
30
_7

pr
1_
pr
u0
_p
ru
_r
31
_7

gp
io
3[
21
]

26
D
16

U
A
RT

1_
R
X
D

ua
rt
1_
rx
d

m
m
c1
_s
dw
p

dc
an
1_
tx

I2
C1
_S
DA

pr
1_
ua
rt
0_
rx
d

pr
1_
pr
u1
_p
ru
_r
31
_1
6

gp
io
0[
14
]

27
C1

3
G
PI
O
3_
19

m
ca
sp
0_
fs
r

eQ
EP
0B
_i
n

m
ca
sp
0_
ax
r3

m
ca
sp
1_
fs
x

EM
U2
_m
ux
2

pr
1_
pr
u0
_p
ru
_r
30
_5

pr
1_
pr
u0
_p
ru
_r
31
_5

gp
io
3[
19
]

28
C1

2
SP

I1
_C
S0

m
ca
sp
0_
ah
cl
kr

eh
rp
w
m
0_
sy
nc
i

m
ca
sp
0_
ax
r2

sp
i1
_c
s0

eC
AP
2_
in
_P
W
M
2_
ou
t

pr
1_
pr
u0
_p
ru
_r
30
_3

pr
1_
pr
u0
_p
ru
_r
31
_3

gp
io
3[
17
]

29
B
13

SP
I1
_D
0

m
ca
sp
0_
fs
x

eh
rp
w
m
0B

sp
i1
_d
0

m
m
c1
_s
dc
d_
m
ux
1

pr
1_
pr
u0
_p
ru
_r
30
_1

pr
1_
pr
u0
_p
ru
_r
31
_1

gp
io
3[
15
]

30
D
12

SP
I1
_D
1

m
ca
sp
0_
ax
r0

eh
rp
w
m
0_
tr
ip
zo
ne

sp
i1
_d
1

m
m
c2
_s
dc
d_
m
ux
1

pr
1_
pr
u0
_p
ru
_r
30
_2

pr
1_
pr
u0
_p
ru
_r
31
_2

gp
io
3[
16
]

31
A
13

SP
I1
_S
CL

K
m
ca
sp
0_
ac
lk
x

eh
rp
w
m
0A

sp
i1
_s
cl
k

m
m
c0
_s
dc
d_
m
ux
1

pr
1_
pr
u0
_p
ru
_r
30
_0

pr
1_
pr
u0
_p
ru
_r
31
_0

gp
io
3[
14
]

32
VA

D
C

33
C8

A
IN
4

34
A
G
N
D

35
A
8

A
IN
6

36
B
8

A
IN
5

37
B
7

A
IN
2

38
A
7

A
IN
3

39
B
6

A
IN
0

40
C7

A
IN
1

41
D
14

CL
KO

U
T2

xd
m
a_
ev
en
t_
in
tr
1

tc
lk
in

cl
ko
ut
2

tim
er
7_
m
ux
1

pr
1_
pr
u0
_p
ru
_r
31
_1
6

EM
U3
_m
ux
0

gp
io
0[
20
]

D
13

G
PI
O
3_
20

m
ca
sp
0_
ax
r1

eQ
EP
0_
in
de
x

m
ca
sp
1_
ax
r0

em
u3

pr
1_
pr
u0
_p
ru
_r
30
_6

pr
1_
pr
u0
_p
ru
_r
31
_6

gp
io
3[
20
]

42
C1

8
G
PI
O
0_
7

eC
AP
0_
in
_P
W
M
0_
ou
t

ua
rt
3_
tx
d

sp
i1
_c
s1

pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

sp
i1
_s
cl
k

m
m
c0
_s
dw
p

xd
m
a_
ev
en
t_
in
tr
2

gp
io
0[
7]

B
12

G
PI
O
3_
18

m
ca
sp
0_
ac
lk
r

eQ
EP
0A
_i
n

m
ca
sp
0_
ax
r2

m
ca
sp
1_
ac
lk
x

pr
1_
pr
u0
_p
ru
_r
30
_4

pr
1_
pr
u0
_p
ru
_r
31
_4

gp
io
3[
18
]

43
-4
6

G
N
D

82 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Power Jack

The DC power jack is located next to the RJ45 Ethernet connector as shown in «figure-51». This uses the same
power connector as is used on the original BeagleBone. The connector has a 2.1mm diameter center post
(5VDC) and a 5.5mm diameter outer dimension on the barrel (GND).

Fig. 2.53: 5VDC Power Jack

The board requires a regulated 5VDC +/-.25V supply at 1A. A higher current rating may be needed if capes are
plugged into the expansion headers. Using a higher current power supply will not damage the board.

USB Client

The USB Client connector is accessible on the bottom side of the board under the row of four LEDs as shown
in «figure-52». It uses a 5 pin miniUSB cable, the same as is used on the original BeagleBone. The cable is
provided with the board. The cable can also be used to power the board.

This port is a USB Client only interface and is intended for connection to a PC.

USB Host

There is a single USB Host connector on the board and is shown in Figure 53 below.

The port is USB 2.0 HS compatible and can supply up to 500mA of current. If more current or ports is needed,
then a HUB can be used.

Serial Header

Each board has a debug serial interface that can be accessed by using a special serial cable that is plugged
into the serial header as shown in Figure 54 below.

2.2. BeagleBone Black 83

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.54: USB Client

Fig. 2.55: USB Host Connector

84 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.56: Serial Debug Header

Two signals are provided, TX and RX on this connector. The levels on these signals are 3.3V. In order to access
these signals, a FTDI USB to Serial cable is recommended as shown in Figure 55 below.

Fig. 2.57: PRU-ICSS Block Diagram

The cable can be purchased from several different places and must be the 3.3V version TTL-232R-3V3. Infor-
mation on the cable itself can be found direct from FTDI at: pdf

Pin 1 of the cable is the black wire. That must align with the pin 1 on the board which is designated by the
white dot next to the connector on the board.

Refer to the support WIKI http://elinux.org/BeagleBoneBlack for more sources of this cable and other options
that will work.

Table is the pinout of the connector as reflected in the schematic. It is the same as the FTDI cable which can
be found at https://ftdichip.com/wp-content/uploads/2020/07/DS_USB_RS232_CABLES.pdf with the exception
that only three pins are used on the board. The pin numbers are defined in Table 14. The signals are from the
perspective of the board.

2.2. BeagleBone Black 85

https://ftdichip.com/wp-content/uploads/2020/07/DS_USB_RS232_CABLES.pdf
http://elinux.org/BeagleBoneBlack
https://ftdichip.com/wp-content/uploads/2020/07/DS_USB_RS232_CABLES.pdf

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.13: J1 Serial Header Pins
PIN NUMBER SIGNAL
1 Ground
4 Receive
5 Transmit

Fig. 2.58: Serial Header

HDMI

Access to the HDMI interface is through the HDMI connector that is located on the bottom side of the board as
shown in Figure 57 below.

The connector is microHDMI connector. This was done due to the space limitations we had in finding a place
to fit the connector. It requires a microHDMI to HDMI cable as shown in Figure 58 below. The cable can be
purchased from several different sources.

microSD

A microSD connector is located on the back or bottom side of the board as shown in Figure 59 below. The
microSD card is not supplied with the board.

When plugging in the SD card, the writing on the card should be up. Align the card with the connector and
push to insert. Then release. There should be a click and the card will start to eject slightly, but it then should
latch into the connector. To eject the card, push the SD card in and then remove your finger. The SD card will
be ejected from the connector.

Do not pull the SD card out or you could damage the connector.

86 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.59: HDMI Connector

Fig. 2.60: HDMI Cable

2.2. BeagleBone Black 87

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.61: microSD Connector

88 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Ethernet

The board comes with a single 10/100 Ethernet interface located next to the power jack as shown in Figure
below.

Fig. 2.62: Ethernet Connector

The PHY supports AutoMDX which means either a straight or a swap cable can be used.

JTAG Connector

A place for an optional 20 pin CTI JTAG header is provided on the board to facilitate the SW development and
debugging of the board by using various JTAG emulators. This header is not supplied standard on the board.
To use this, a connector will need to be soldered onto the board.

If you need the JTAG connector you can solder it on yourself. No other components are needed. The connector is
made by Samtec and the part number is FTR-110-03-G-D-06. You can purchase it from http://www.digikey.com/

2.2.8 Cape Board Support

The BeagleBone Black has the ability to accept up to four expansion boards or capes that can be stacked onto
the expansion headers. The word cape comes from the shape of the board as it is fitted around the Ethernet
connector on the main board. This notch acts as a key to ensure proper orientation of the cape.

This section describes the rules for creating capes to ensure proper operation with the BeagleBone Black and
proper interoperability with other capes that are intended to coexist with each other. Co-existence is not a
requirement and is in itself, something that is impossible to control or administer. But, people will be able to
create capes that operate with other capes that are already available based on public information as it pertains
to what pins and features each cape uses. This information will be able to be read from the EEPROM on each
cape.

This section is intended as a guideline for those wanting to create their own capes. Its intent is not to put limits
on the creation of capes and what they can do, but to set a few basic rules that will allow the SW to administer

2.2. BeagleBone Black 89

https://www.digikey.com

BeagleBoard Docs, Release 1.0.20230308-wip

their operation with the BeagleBone Black. For this reason there is a lot of flexibility in the specification that we
hope most people will find liberating and in the spirit of Open Source Hardware. I am sure there are others that
would like to see tighter control, more details, more rules and much more order to the way capes are handled.

Over time, this specification will change and be updated, so please refer to the latest version of this manual
prior to designing your own capes to get the latest information.

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN

POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

BeagleBone Black Cape Compatibility

The main expansion headers are the same between the BeagleBone and BeagleBone Black. While the pins are
the same, some of these pins are now used on the BeagleBone Black. The following sections discuss these
pins.

The Power Expansion header was removed from the BeagleBone Black and is not available.

PAY VERY CLOSE ATTENTION TO THIS SECTION AND READ CAREFULLY!!

LCD Pins The LCD pins are used on the BeagleBone Black to drive the HDMI framer. These signals are listed
in Table 15 below.

Table 2.14: P8 LCD Conflict Pins
PIN PROC NAME MODE0

27 U5 GPIO2_22 lcd_vsync
28 V5 GPIO2_24 lcd_pclk
29 R5 GPIO2_23 lcd_hsync
30 R6 GPIO2_25 lcd_ac_bias_en
31 V4 UART5_CTSN lcd_data14
32 T5 UART5_RTSN lcd_data15
33 V3 UART4_RTSN lcd_data13
34 U4 UART3_RTSN lcd_data11
35 V2 UART4_CTSN lcd_data12
36 U3 UART3_CTSN lcd_data10
37 U1 UART5_TXD lcd_data8
38 U2 UART5_RXD lcd_data9
39 T3 GPIO2_12 lcd_data6
40 T4 GPIO2_13 lcd_data7
41 T1 GPIO2_10 lcd_data4
42 T2 GPIO2_11 lcd_data5
43 R3 GPIO2_8 lcd_data2
44 R4 GPIO2_9 lcd_data3
45 R1 GPIO2_6 lcd_data0
46 R2 GPIO2_7 lcd_data1

If you are using these pins for other functions, there are a few things to keep in mind:

• On the HDMI Framer, these signals are all inputs so the framer will not be driving these pins.

• The HDMI framer will add a load onto these pins.

• There are small filter caps on these signals which could also change the operation of these pins if used
for other functions.

• When used for other functions, the HDMI framer cannot be used.

90 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

• There is no way to power off the framer as this would result in the framer being powered through these
input pins which would not a be a good idea.

• These pins are also the SYSBOOT pins. DO NOT drive them before the SYS_RESETN signal goes high. If
you do, the board may not boot because you would be changing the boot order of the processor.

In order to use these pins, the SW will need to reconfigure them to whatever function you need the pins to do.
To keep power low, the HDMI framer should be put in a low power mode via the SW using the I2C0 interface.

eMMC Pins The BeagleBone Black uses 10 pins to connect to the processor that also connect to the P8
expansion connector. These signals are listed below in Table 16. The proper mode is MODE2.

Table 2.15: P8 eMMC Conflict Pins
PIN PROC SIGNAL MODE

22 V8 MMC1_DAT5 1
23 U8 MMC1_DAT4 1
24 V7 MMC1_DAT1 1
5 R8 MMC1_DAT2 1
4 T9 MMC1_DAT7 1
3 R9 MMC1_DAT6 1
6 T8 MMC1_DAT3 1
25 U7 MMC1_DAT0 1
20 V9 MMC1_CMD 2
21 U9 MMC1_CLK 2

If using these pins, several things need to be kept in mind when doing so:

• On the eMMC device, these signals are inputs and outputs.

• The eMMC device will add a load onto these pins.

• When used for other functions, the eMMC cannot be used. This means you must boot from the microSD
slot.

• If using these pins, you need to put the eMMC into reset. This requires that the eMMC be accessible from
the processor in order to set the eMMC to accept the eMMC pins.

• DO NOT drive the eMMC pins until the eMMC has been put into reset. This means that if you choose to
use these pins, they must not drive any signal until enabled via Software. This requires a buffer or some
other form of hold off function enabled by a GPIO pin on the expansion header.

On power up, the eMMC is NOT reset. If you hold the Boot button down, this will force a boot from the microSD.
This is not convenient when a cape is plugged into the board. There are two solutions to this issue:

1. Wipe the eMMC clean. This will cause the board to default to microSD boot. If you want to use the eMMC
later, it can be reprogrammed. 2. You can also tie LCD_DATA2 low on the cape during boot. This will be the
same as if you were holding the boot button. However, in order to prevent unforeseen issues, you need to gate
this signal with RESET, when the data is sampled. After set goes high, the signal should be removed from the
pin.

BEFORE the SW reinitializes the pins, it MUST put the eMMC in reset. This is done by taking eMMC_RSTn
(GPIO1_20) LOW after the eMMC has been put into a mode to enable the reset line. This pin does not connect
to the expansion header and is accessible only on the board.

DO NOT automatically drive any conflicting pins until the SW enables it. This puts the SW in control to ensure
that the eMMC is in reset before the signals are used from the cape. You can use a GPIO pin for this. No, we
will not designate a pin for this function. It will be determined on a cape by cape basis by the designer of the
respective cape.

2.2. BeagleBone Black 91

BeagleBoard Docs, Release 1.0.20230308-wip

EEPROM

Each cape must have its own EEPROM containing information that will allow the SW to identify the board and to
configure the expansion headers pins as needed. The one exception is proto boards intended for prototyping.
They may or may not have an EEPROM on them. An EEPROM is required for all capes sold in order for them
operate correctly when plugged into the BeagleBone Black.

The address of the EEPROM will be set via either jumpers or a dipswitch on each expansion board. Figure 61
below is the design of the EEPROM circuit.

The EEPROM used is the same one as is used on the BeagleBone and the BeagleBone Black, a CAT24C256. The
CAT24C256 is a 256 kb Serial CMOS EEPROM, internally organized as 32,768 words of 8 bits each. It features
a 64-byte page write buffer and supports the Standard (100 kHz), Fast (400 kHz) and Fast-Plus (1 MHz) I2C
protocol.

Fig. 2.63: Expansion Board EEPROM Without Write Protect

The addressing of this device requires two bytes for the address which is not used on smaller size EEPROMs,
which only require only one byte. Other compatible devices may be used as well. Make sure the device you
select supports 16 bit addressing. The part package used is at the discretion of the cape designer.

EEPROM Address In order for each cape to have a unique address, a board ID scheme is used that sets
the address to be different depending on the setting of the dipswitch or jumpers on the capes. A two position
dipswitch or jumpers is used to set the address pins of the EEPROM.

It is the responsibility of the user to set the proper address for each board and the position in the stack that the
board occupies has nothing to do with which board gets first choice on the usage of the expansion bus signals.
The process for making that determination and resolving conflicts is left up to the SW and, as of this moment
in time, this method is a something of a mystery due to the new Device Tree methodology introduced in the
3.8 kernel.

Address line A2 is always tied high. This sets the allowable address range for the expansion cards to 0x54
to**0x57**. All other I2C addresses can be used by the user in the design of their capes. But, these addresses
must not be used other than for the board EEPROM information. This also allows for the inclusion of EEPROM
devices on the cape if needed without interfering with this EEPROM. It requires that A2 be grounded on the
EEPROM not used for cape identification.

I2C Bus The EEPROMs on each expansion board are connected to I2C2 on connector P9 pins 19 and 20.
For this reason I2C2 must always be left connected and should not be changed by SW to remove it from the
expansion header pin mux settings. If this is done, the system will be unable to detect the capes.

The I2C signals require pullup resistors. Each board must have a 5.6K resistor on these signals. With four capes
installed this will result in an effective resistance of 1.4K if all capes were installed and all the resistors used
were exactly 5.6K. As more capes are added the resistance is reduced to overcome capacitance added to the

92 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

signals. When no capes are installed the internal pullup resistors must be activated inside the processor to
prevent I2C timeouts on the I2C bus.

The I2C2 bus may also be used by capes for other functions such as I/O expansion or other I2C compatible
devices that do not share the same address as the cape EEPROM.

EEPROM **********************

The design in Figure 62 has the write protect disabled. If the write protect is not enabled, this does expose
the EEPROM to being corrupted if the I2C2 bus is used on the cape and the wrong address written to. It is
recommended that a write protection function be implemented and a Test Point be added that when grounded,
will allow the EEPROM to be written to. To enable write operation, Pin 7 of the EEPROM must be tied to ground.

When not grounded, the pin is HI via pullup resistor R210 and therefore write protected. Whether or not Write
Protect is provided is at the discretion of the cape designer.

Variable & MAC Memory VDD_3V3B

Fig. 2.64: Expansion Board EEPROM Write Protect

EEPROM Data Format Table below shows the format of the contents of the expansion board EEPROM. Data
is stored in Big Endian with the least significant value on the right. All addresses read as a single byte data
from the EEPROM, but two byte addressing is used. ASCII values are intended to be easily read by the user
when the EEPROM contents are dumped.

Table 2.16: Expansion Board EEPROM
Name Offset Size (bytes) Contents

Header 0 4 0xAA, 0x55, 0x33, 0xEE
EEPROM Revision 4 2 Revision number of the overall format of this EEPROM in ASCII =A1
Board Name 6 32 Name of board in ASCII so user can read it when the EEPROM is dumped. Up to developer of the board as to what they call the board..
Version 38 4 Hardware version code for board in ASCII.Version format is up to the developer.i.e. 02.1…00A1….10A0
Manufacturer 42 16 ASCII name of the manufacturer. Company or individual’s name.
Part Number 58 16 ASCII Characters for the part number. Up to maker of the board.
Number of Pins 74 2 Number of pins used by the daughter board including the power pins used. Decimal value of total pins 92 max, stored in HEX.
Serial Number 76 12 Serial number of the board. This is a 12 character string which is: WWYY&&&&nnnn where, WW = 2 digit week of the year of production, YY = 2 digit year of production , &&&&=Assembly code to let the manufacturer document the assembly number or product. A way to quickly tell from reading the serial number what the board is. Up to the developer to determine. nnnn = incrementing board number for that week of production
Pin Usage 88 148 Two bytes for each configurable pins of the 74 pins on the expansion connectors, MSB LSB Bit order: 15..14 ….. 1..0 Bit 15….Pin is used or not…0=Unused by cape 1=Used by cape Bit 14-13…Pin Direction…..1 0=Output 01=Input 11=BDIR Bits 12-7…Reserved……..should be all zeros Bit 6….Slew Rate …….0=Fast 1=Slow Bit 5….Rx Enable…….0=Disabled 1=Enabled Bit 4….Pull Up/Dn Select….0=Pulldown 1=PullUp Bit 3….Pull Up/DN enabled…0=Enabled 1=Disabled Bits 2-0 …Mux Mode Selection…Mode 0-7
VDD_3V3B Current 236 2 Maximum current in milliamps. This is HEX value of the current in decimal 1500mA=0x05 0xDC 325mA=0x01 0x45
VDD_5V Current 238 2 Maximum current in milliamps. This is HEX value of the current in decimal 1500mA=0x05 0xDC 325mA=0x01 0x45
SYS_5V Current 240 2 Maximum current in milliamps. This is HEX value of the current in decimal 1500mA=0x05 0xDC 325mA=0x01 0x45
DC Supplied 242 2 Indicates whether or not the board is supplying voltage on the VDD_5V rail and the current rating 000=No 1-0xFFFF is the current supplied storing the decimal equivalent in HEX format
Available 244 32543 Available space for other non-volatile codes/data to be used as needed by the manufacturer or SW driver. Could also store presets for use by SW.

Pin Usage Table 18 is the locations in the EEPROM to set the I/O pin usage for the cape. It contains the
value to be written to the Pad Control Registers. Details on this can be found in section 9.2.2 of the AM3358
Technical Reference Manual, The table is left blank as a convenience and can be printed out and used as a

2.2. BeagleBone Black 93

BeagleBoard Docs, Release 1.0.20230308-wip

template for creating a custom setting for each cape. The 16 bit integers and all 16 bit fields are to be stored
in Big Endian format.

Bit 15 PIN USAGE is an indicator and should be a 1 if the pin is used or 0 if it is unused.

Bits 14-7 RESERVED is not to be used and left as 0.

Bit 6 SLEW CONTROL 0=Fast 1=Slow

Bit 5 RX Enabled 0=Disabled 1=Enabled

Bit 4 PU/PD 0=Pulldown 1=Pullup.

Bit 3 PULLUP/DN 0=Pullup/pulldown enabled 1= Pullup/pulldown disabled

Bit 2-0 MUX MODE SELECT Mode 0-7. (refer to TRM)

Refer to the TRM for proper settings of the pin MUX mode based on the signal selection to be used.

The AIN0-6 pins do not have a pin mux setting, but they need to be set to indicate if each of the pins is used
on the cape. Only bit 15 is used for the AIN signals.

94 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
bl
e
2.
17
:
EE
PR
O
M
Pi
n
Us
ag
e

+
+

+
15

14
13

12
11

10
9

8
7

6
5

O
ff
se
t

Co
nn

N
am

e
Pi
n
U
sa
ge

Ty
pe

+
R
es
er
ve
d

+
+

S
L
E
W

R
X

P
U
-
P
D

P
U
/D

E
N

M
ux

M
od

e
88

P9
-2
2

U
A
RT

2_
R
X
D

+
+

+
+

+
+

+
+

+
+

+
90

P9
-2
1

U
A
RT

2_
TX

D
+

+
+

+
+

+
+

+
+

+
+

92
P9

-1
8

I2
C1

_S
D
A

+
+

+
+

+
+

+
+

+
+

+
94

P9
-1
7

I2
C1

_S
CL

+
+

+
+

+
+

+
+

+
+

+
96

P9
-4
2

G
PI
O
0_
7

+
+

+
+

+
+

+
+

+
+

+
98

P8
-3
5

U
A
RT

4_
CT

SN
+

+
+

+
+

+
+

+
+

+
+

10
0

P8
-3
3

U
A
RT

4_
RT

SN
+

+
+

+
+

+
+

+
+

+
+

10
2

P8
-3
1

U
A
RT

5_
CT

SN
+

+
+

+
+

+
+

+
+

+
+

10
4

P8
-3
2

U
A
RT

5_
RT

SN
+

+
+

+
+

+
+

+
+

+
+

10
6

P9
-1
9

I2
C2

_S
CL

+
+

+
+

+
+

+
+

+
+

+
10

8
P9

-2
0

I2
C2

_S
D
A

+
+

+
+

+
+

+
+

+
+

+
11

0
P9

-2
6

U
A
R
*T
1_
R
X
D

+
+

+
+

+
+

+
+

+
+

+
11

2
P9

-2
4

U
A
RT

1_
TX

D
+

+
+

+
+

+
+

+
+

+
+

11
4

P9
-4
1

CL
KO

U
T2

+
+

+
+

+
+

+
+

+
+

+
11

6
P8

-1
9

EH
R
PW

M
2A

+
+

+
+

+
+

+
+

+
+

+
11

8
P8

-1
3

EH
R
PW

M
2B

+
+

+
+

+
+

+
+

+
+

+
12

0
P8

-1
4

G
PI
O
0_
26

+
+

+
+

+
+

+
+

+
+

+
12

2
P8

-1
7

G
PI
O
0_
27

+
+

+
+

+
+

+
+

+
+

+
12

4
P9

-1
1

U
A
RT

4_
R
X
D

+
+

+
+

+
+

+
+

+
+

+
12

6
P9

-1
3

U
A
RT

4_
TX

D
+

+
+

+
+

+
+

+
+

+
+

12
8

P8
-2
5

G
PI
O
1_
0

+
+

+
+

+
+

+
+

+
+

+
13

0
P8

-2
4

G
PI
O
1_
1

+
+

+
+

+
+

+
+

+
+

+
13

2
P8

-5
G
PI
O
1_
2

+
+

+
+

+
+

+
+

+
+

+
13

4
P8

-6
G
PI
O
1_
3

+
+

+
+

+
+

+
+

+
+

+
13

6
P8

-2
3

G
PI
O
1_
4

+
+

+
+

+
+

+
+

+
+

+
13

8
P8

-2
2

G
PI
O
1_
5

+
+

+
+

+
+

+
+

+
+

+
14

0
P8

-3
G
PI
O
1_
6

+
+

+
+

+
+

+
+

+
+

+
14

2
P8

-4
G
PI
O
1_
7

+
+

+
+

+
+

+
+

+
+

+
14

4
P8

-1
2

G
PI
O
1_
12

+
+

+
+

+
+

+
+

+
+

+
14

6
P8

-1
1

G
PI
O
1_
13

+
+

+
+

+
+

+
+

+
+

+
14

8
P8

-1
6

G
PI
O
1_
14

+
+

+
+

+
+

+
+

+
+

+
15

0
P8

-1
5

G
PI
O
1_
15

+
+

+
+

+
+

+
+

+
+

+
15

2
P9

-1
5

G
PI
O
1_
16

+
+

+
+

+
+

+
+

+
+

+

2.2. BeagleBone Black 95

BeagleBoard Docs, Release 1.0.20230308-wip

15
14

13
12

11
10

9
8

7
6

5
O
ff
se
t

Co
nn

Na
m
e

Pi
n
Us
ag
e

Ty
pe

+
Re
se
rv
e

+
+

S
L
E
W

R
X

P
U
-P
D

P
U
/D
E
N

M
ux
M
od
e

15
4

P9
-2
3

G
PI
O
1_
17

15
6

P9
-1
4

EH
RP
W
M
1A

15
8

P9
-1
6

EH
RP
W
M
1B

16
0

P9
-1
2

G
PI
O
1_
28

16
2

P8
-2
6

G
PI
O
1_
29

16
4

P8
-2
1

G
PI
O
1_
30

16
6

P8
-2
0

G
PI
O
1_
31

16
8

P8
-1
8

G
PI
O
2_
1

17
0

P8
-7

TI
M
ER
4

17
2

P8
-9

TI
M
ER
5

+
+

+
+

+
+

+
+

+
+

+
17
4

P8
-1
0

TI
M
ER
6

+
+

+
+

+
+

+
+

+
+

+
17
6

P8
-8

TI
M
ER
7

+
+

+
+

+
+

+
+

+
+

+
17
8

P8
-4
5

G
PI
O
2_
6

+
+

+
+

+
+

+
+

+
+

+
18
0

P8
-4
6

G
PI
O
2_
7

+
+

+
+

+
+

+
+

+
+

+
18
2

P8
-4
3

G
PI
O
2_
8

+
+

+
+

+
+

+
+

+
+

+
18
4

P8
-4
4

G
PI
O
2_
9

+
+

+
+

+
+

+
+

+
+

+
18
6

P8
-4
1

G
PI
O
2_
10

+
+

+
+

+
+

+
+

+
+

+
18
8

P8
-4
2

G
PI
O
2_
11

+
+

+
+

+
+

+
+

+
+

+
19
0

P8
-3
9

G
PI
O
2_
12

+
+

+
+

+
+

+
+

+
+

+
19
2

P8
-4
0

G
PI
O
2_
13

+
+

+
+

+
+

+
+

+
+

+
19
4

P8
-3
7

UA
RT
5_
TX
‘+
‘

+
+

+
+

+
+

+
+

+
+

+
19
6

P8
-3
8

UA
RT
5_
RX
‘+
‘

+
+

+
+

+
+

+
+

+
+

+
19
8

P8
-3
6

UA
RT
3_
CT
SN

+
+

+
+

+
+

+
+

+
+

+
20
0

P8
-3
4

UA
RT
3_
RT
SN

+
+

+
+

+
+

+
+

+
+

+
20
2

P8
-2
7

G
PI
O
2_
22

+
+

+
+

+
+

+
+

+
+

+
20
4

P8
-2
9

G
PI
O
2_
23

+
+

+
+

+
+

+
+

+
+

+
20
6

P8
-2
8

G
PI
O
2_
24

+
+

+
+

+
+

+
+

+
+

+
20
8

P8
-3
0

G
PI
O
2_
25

+
+

+
+

+
+

+
+

+
+

+
21
0

P9
-2
9

SP
I1
_D
0

+
+

+
+

+
+

+
+

+
+

+
21
2

P9
-3
0

SP
I1
_D
1

+
+

+
+

+
+

+
+

+
+

+
21
4

P9
-2
8

SP
I1
_C
S0

+
+

+
+

+
+

+
+

+
+

+
21
6

P9
-2
7

G
PI
O
3_
19

+
+

+
+

+
+

+
+

+
+

+
21
8

P9
-3
1

SP
I1
_S
CL
K

+
+

+
+

+
+

+
+

+
+

+
22
0

P9
-2
5

G
PI
O
3_
21

+
+

+
+

+
+

+
+

+
+

+
+

+
+

15
14

13
12

11
10

9
8

7
6

5
O
ff
se
t

Co
nn

Na
m
e

Pi
n
Us
ag
e

Ty
pe

Re
se
rv
e

S
L
E
W

R
X

P
U
-P
D

P
U
/D
E
N

M
ux
M
od
e

+
+

+
+

0
0

0
0

0
0

0
0

0
0

22
2

P9
-3
9

AI
N0

+
+

+
+

+
+

+
+

+
+

+
22
4

P9
-4
0

AI
N1

+
+

+
+

+
+

+
+

+
+

+
22
6

P9
-3
7

AI
N2

+
+

+
+

+
+

+
+

+
+

+
22
8

P9
-3
8

AI
N3

+
+

+
+

+
+

+
+

+
+

+
23
0

P9
-3
3

AI
N4

+
+

+
+

+
+

+
+

+
+

+
23
2

P9
-3
6

AI
N5

+
+

+
+

+
+

+
+

+
+

+
23
4

P9
-3
5

AI
N6

+
+

+
+

+
+

+
+

+
+

+

96 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Pin Usage Consideration

This section covers things to watch for when hooking up to certain pins on the expansion headers.

Boot PIN There are 16 pins that control the boot mode of the processor that are exposed on the expansion
headers. Figure 63 below shows those signals as they appear on the BeagleBone Black.:

Fig. 2.65: Boot signals

If you plan to use any of these signals, then on power up, these pins should not be driven. If you do, it can
affect the boot mode of the processor and could keep the processor from booting or working correctly.

If you are designing a cape that is intended to be used as a boot source, such as a NAND board, then you should
drive the pins to reconfigure the boot mode, but only at reset. After the reset phase, the signals should not
be driven to allow them to be used for the other functions found on those pins. You will need to override the
resistor values in order to change the settings. The DC pull-up requirement should be based on the AM3358
Vih min voltage of 2 volts and AM3358 maximum input leakage current of 18uA. Also take into account any
other current leakage paths on these signals which could be caused by your specific cape design.

The DC pull-down requirement should be based on the AM3358 Vil max voltage of 0.8 volts and AM3358
maximum input leakage current of 18uA plus any other current leakage paths on these signals.

Expansion Connectors

A combination of male and female headers is used for access to the expansion headers on the main board.
There are three possible mounting configurations for the expansion headers:

• Single no board stacking but can be used on the top of the stack.

2.2. BeagleBone Black 97

BeagleBoard Docs, Release 1.0.20230308-wip

• Stacking-up to four boards can be stacked on top of each other.

• Stacking with signal stealing-up to three boards can be stacked on top of each other, but certain boards
will not pass on the signals they are using to prevent signal loading or use by other cards in the stack.

The following sections describe how the connectors are to be implemented and used for each of the different
configurations.

Non-Stacking Headers-Single Cape For non-stacking capes single configurations or where the cape can
be the last board on the stack, the two 46 pin expansion headers use the same connectors. Figure 64 is a
picture of the connector. These are dual row 23 position 2.54mm x 2.54mm connectors.

Fig. 2.66: Single Expansion Connector

The connector is typically mounted on the bottom side of the board as shown in Figure 65. These are very
common connectors and should be easily located. You can also use two single row 23 pin headers for each of
the dual row headers.

Fig. 2.67: Single Cape Expansion Connector

It is allowed to only populate the pins you need. As this is a non-stacking configuration, there is no need for
all headers to be populated. This can also reduce the overall cost of the cape. This decision is up to the cape
designer.

For convenience listed in Table 19 are some possible choices for part numbers on this connector. They have
varying pin lengths and somemay bemore suitable than others for your use. It should be noted, that the longer
the pin and the further it is inserted into the BeagleBone Black connector, the harder it will be to remove due
to the tension on 92 pins. This can be minimized by using shorter pins or removing those pins that are not
used by your particular design. The first item in**Table 18** is on the edge and may not be the best solution.
Overhang is the amount of the pin that goes past the contact point of the connector on the BeagleBone Black

Table 2.19: Single Cape Connectors
SUPPLIER PARTNUMBER LENGTH(in) OVERHANG(in)

Major League TSHC-123-D-03-145-G-LF .145 .004
Major League TSHC-123-D-03-240-G-LF .240 .099
Major League TSHC-123-D-03-255-G-LF .255 .114

The G in the part number is a plating option. Other options may be used as well as long as the contact area is
gold. Other possible sources are Sullins and Samtec for these connectors. You will need to ensure the depth
into the connector is sufficient

Main Expansion Headers-Stacking For stacking configuration, the two 46 pin expansion headers use the
same connectors. Figure 66 is a picture of the connector. These are dual row 23 position 2.54mm x 2.54mm
connectors.

The connector is mounted on the top side of the board with longer tails to allow insertion into the BeagleBone
Black. Figure 67 is the connector configuration for the connector.

98 Chapter 2. Boards

http://www.mlelectronics.com/
http://www.mlelectronics.com/
http://www.mlelectronics.com/

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.68: Expansion Connector

Fig. 2.69: Stacked Cape Expansion Connector

For convenience listed in Table 18 are some possible choices for part numbers on this connector. They have
varying pin lengths and somemay bemore suitable than others for your use. It should be noted, that the longer
the pin and the further it is inserted into the BeagleBone Black connector, the harder it will be to remove due
to the tension on 92 pins. This can be minimized by using shorter pins. There are most likely other suppliers
out there that will work for this connector as well. If anyone finds other suppliers of compatible connectors
that work, let us know and they will be added to this document. The first item in**Table 19** is on the edge
and may not be the best solution. Overhang is the amount of the pin that goes past the contact point of the
connector on the BeagleBone Black.

The third part listed in Table 20 will have insertion force issues.

Table 2.20: Stacked Cape Connectors
SUPPLIER PARTNUMBER TAIL LENGTH(in) OVERHANG(in)

Major League SSHQ-123-D-06-G-LF .190 0.049
Major League SSHQ-123-D-08-G-LF .390 0.249
Major League SSHQ-123-D-10-G-LF .560 0.419

There are also different plating options on each of the connectors above. Gold plating on the contacts is the
minimum requirement. If you choose to use a different part number for plating or availability purposes, make
sure you do not select the “LT” option.

Other possible sources are Sullins and Samtec but make sure you select one that has the correct mating depth.

StackedStealing Figure 68 is the connector configuration for stackable capes that does not provide all of
the signals upwards for use by other boards. This is useful if there is an expectation that other boards could
interfere with the operation of your board by exposing those signals for expansion. This configuration consists
of a combination of the stacking and nonstacking style connectors.

Fig. 2.70: Stacked w/Signal Stealing Expansion Connector

Retention Force The length of the pins on the expansion header has a direct relationship to the amount of
force that is used to remove a cape from the BeagleBone Black. The longer the pins extend into the connector
the harder it is to remove. There is no rule that says that if longer pins are used, that the connector pins have
to extend all the way into the mating connector on the BeagleBone Black, but this is controlled by the user and
therefore is hard to control. We have also found that if you use gold pins, while more expensive, it makes for
a smoother finish which reduces the friction.

This section will attempt to describe the tradeoffs and things to consider when selecting a connector and its
pin length.

Figure 69 shows the key measurements used in calculating how much the pin extends past the contact point
on the connector, what we call overhang.

To calculate the amount of the pin that extends past the Point of Contact, use the following formula:

Overhang=Total Pin Length- PCB thickness (.062) - contact point (.079)

The longer the pin extends past the contact point, the more force it will take to insert and remove the board.
Removal is a greater issue than the insertion.

2.2. BeagleBone Black 99

http://www.mlelectronics.com/
http://www.mlelectronics.com/
http://www.mlelectronics.com/

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.71: Connector Pin Insertion Depth

8.5 Signal Usage

Based on the pin muxing capabilities of the processor, each expansion pin can be configured for different
functions. When in the stacking mode, it will be up to the user to ensure that any conflicts are resolved
between multiple stacked cards. When stacked, the first card detected will be used to set the pin muxing of
each pin. This will prevent other modes from being supported on stacked cards and may result in them being
inoperative.

In «section-7-1» of this document, the functions of the pins are defined as well as the pin muxing options.
Refer to this section for more information on what each pin is. To simplify things, if you use the default name as
the function for each pin and use those functions, it will simplify board design and reduce conflicts with other
boards.

Interoperability is up to the board suppliers and the user. This specification does not specify a fixed function on
any pin and any pin can be used to the full extent of the functionality of that pin as enabled by the processor.

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE THE
PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

8.6 Cape Power

This section describes the power rails for the capes and their usage.

Main Board Power The Table 1 describes the voltages from the main board that are available on the expan-
sion connectors and their ratings. All voltages are supplied by connector**P9**. The current ratings listed are
per pin.

Table 2.21: Expansion Voltages
Current Name P9 P9 Name Current

250mA VDD_3V3B 3 4 VDD_3V3B 250mA
1000mA VDD_5V 5 6 VDD_5V 1000mA
250mA SYS_5V 7 8 SYS_5V 250mA

100 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

The VDD_3V3B rail is supplied by the LDO on the BeagleBone Black and is the primary power rail for expansion
boards. If the power requirement for the capes exceeds the current rating, then locally generated voltage rail
can be used. It is recommended that this rail be used to power any buffers or level translators that may be
used.

VDD_5V is the main power supply from the DC input jack. This voltage is not present when the board is powered
via USB. The amount of current supplied by this rail is dependent upon the amount of current available. Based
on the board design, this rail is limited to 1A per pin from the main board.

The SYS_5V rail is the main rail for the regulators on the main board. When powered from a DC supply or USB,
this rail will be 5V. The available current from this rail depends on the current available from the USB and DC
external supplies.

Power A cape can have a jack or terminals to bring in whatever voltages may be needed by that board. Care
should be taken not to let this voltage be fed back into any of the expansion header pins.

It is possible to provide 5V to the main board from an expansion board. By supplying a 5V signal into the
VDD_5V rail, the main board can be supplied. This voltage must not exceed 5V. You should not supply any
voltage into any other pin of the expansion connectors. Based on the board design, this rail is limited to 1A
per pin to the BeagleBone Black.

There are several precautions that need to be taken when working with the expansion headers to prevent
damage to the board.

1. Do not apply any voltages to any I/O pins when the board is not powered on. 2. Do not drive any external
signals into the I/O pins until after the VDD_3V3B rail is up. 3. Do not apply any voltages that are generated
from external sources. 4. If voltages are generated from the VDD_5V signal, those supplies must not become
active until after the VDD_3V3B rail is up. 5. If you are applying signals from other boards into the expansion
headers, make sure you power the board up after you power up the BeagleBone Black or make the connections
after power is applied on both boards.

Powering the processor via its I/O pins can cause damage to the processor.

8.7 Mechanical

This section provides the guidelines for the creation of expansion boards from amechanical standpoint. Defined
is a standard board size that is the same profile as the BeagleBone Black. It is expected that the majority of
expansion boards created will be of standard size. It is possible to create boards of other sizes and in some
cases this is required, as in the case of an LCD larger than the BeagleBone Black board.

Standard Cape Size A slot is provided for the Ethernet connector to stick up higher than the cape when
mounted. This also acts as a key function to ensure that the cape is oriented correctly. Space is also provided
to allow access to the user LEDs and reset button on the main board.

Some people have inquired as to the difference in the radius of the corners of the BeagleBone Black and why
they are different. This is a result of having the BeagleBone fit into the Altoids style tin.

It is not required that the cape be exactly like the BeagleBone Black board in this respect.

Extended Cape Size Capes larger than the standard board size are also allowed. A good example would be
an LCD panel. There is no practical limit to the sizes of these types of boards. The notch for the key is also
not required, but it is up to the supplier of these boards to ensure that the BeagleBone Black is not plugged in
incorrectly in such a manner that damage would be caused to the BeagleBone Black or any other capes that
may be installed. Any such damage will be the responsibility of the supplier of such a cape to repair.

As with all capes, the EEPROM is required and compliance with the power requirements must be adhered to.

2.2. BeagleBone Black 101

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.72: Cape Board Dimensions

Enclosures There are numerous enclosures being created in all different sizes and styles. The mechanical
design of these enclosures is not being defined by this specification.

The ability of these designs to handle all shapes and sizes of capes, especially when you consider up to four can
be mounted with all sorts of interface connectors, it is difficult to define a standard enclosure that will handle
all capes already made and those yet to be defined.

If cape designers want to work together and align with one enclosure and work around it that is certainly
acceptable. But we will not pick winners and we will not do anything that impedes the openness of the platform
and the ability of enclosure designers and cape designers to innovate and create new concepts.

2.2.9 BeagleBone Black Mechanical

Dimensions and Weight

Size: 3.5” x 2.15” (86.36mm x 53.34mm)

Max height: .187” (4.76mm)

PCB Layers: 6

PCB thickness: .062”

RoHS Compliant: Yes

Weight: 1.4 oz

Silkscreen and Component Locations

2.2.10 Pictures

102 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.73: Board Dimensions

2.2. BeagleBone Black 103

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.74: Component Side Silkscreen

104 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.75: Circuit Side Silkscreen

2.2. BeagleBone Black 105

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.76: Top Side

Fig. 2.77: Bottom Side

106 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.78: 45 Degree Top

2.2. BeagleBone Black 107

BeagleBoard Docs, Release 1.0.20230308-wip

2.2.11 Support Information

All support for this design is through the BeagleBoard.org community at: beagleboard@googlegroups.com or
http://beagleboard.org/discuss

Hardware Design

Design documentation can be found on the eMMC of the board under the documents/hardware directory when
connected using the USB cable. Provided there is:

• Schematic in PDF

• Schematic in OrCAD (Cadence Design Entry CIS 16.3)

• PCB Gerber

• PCB Layout (Allegro)

• Bill of Material

• System Reference Manual (This document).

This directory is not always kept up to date in every SW release due to the frequency of changes of the SW.
The best solution is to download the files from http://www.beagleboard.org/distros

We do not track SW revision of what is in the eMMC. SW is tracked separately from the HW due to the frequency
of changes which would require massive relabeling of boards due to the frequent SW changes. You should
always use the latest SW revision.

To see what SW revision is loaded into the eMMC follow the instructions at https://elinux.org/Beagleboard:
Updating_The_Software#Checking_The_Angstrom_Image_Version

Software Updates

It is a good idea to always use the latest software. Instructions for how to update your software to the latest
version can be found at:

http://elinux.org/BeagleBoneBlack#Updating_the_eMMC_Software

RMA Support

If you feel your board is defective or has issues, request an RMA by filling out the form at http://beagleboard.
org/support/rma . You will need the serial number and revision of the board. The serial numbers and revisions
keep moving. Different boards can have different locations depending on when they were made. The following
figures show the three locations of the serial and revision number.

Trouble Shooting HDMI Issues

Many people are having issues with getting HDMI to work on their TV/Display. Unfortunately, we do not have
the resources to buy all the TVs and Monitors on the market today nor go to eBay and buy all of the TVs and
monitors made over the last five years to thoroughly test each and every one. We are depending on community
members to help us get these tested and information provided on how to get them to work.

One would think that if it worked on a lot of different TVs and monitors it would work on most if not all of them,
assuming they meet the specification. However, there are other issues that could also result in these various
TVs and monitors not working. The intent is that this page will be useful in navigating some of these issues.
As others also find solutions, as long as we know about them, they will be added here as well. For access to
the most up to date troubleshooting capabilities, go to the support wiki at http://www.elinux.org/Beagleboard:
BeagleBoneBlack_HDMI

108 Chapter 2. Boards

mailto:beagleboard@googlegroups.com
http://beagleboard.org/discuss
http://www.beagleboard.org/distros
https://elinux.org/Beagleboard:Updating_The_Software#Checking_The_Angstrom_Image_Version
https://elinux.org/Beagleboard:Updating_The_Software#Checking_The_Angstrom_Image_Version
http://elinux.org/BeagleBoneBlack#Updating_the_eMMC_Software
http://beagleboard.org/support/rma
http://beagleboard.org/support/rma
http://www.elinux.org/Beagleboard:BeagleBoneBlack_HDMI
http://www.elinux.org/Beagleboard:BeagleBoneBlack_HDMI

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.79: Initial Serial Number and Revision Locations

Fig. 2.80: Second Phase Serial Number and Revision Location

Fig. 2.81: Third Phase Serial Number and Revision Location

2.2. BeagleBone Black 109

BeagleBoard Docs, Release 1.0.20230308-wip

The early release of the Software had some issues in the HDMI driver. Be sure and use the latest SW to take
advantage of the improvements.

http://www.elinux.org/Beagleboard:BeagleBoneBlack#Software_Resources

EDID EDID is the way the board requests information from the display and determines all the resolutions that
it can support. The driver on the board will then look at these timings and find the highest resolution that is
compatible with the board and uses that resolution for the display. For more information on EDID, you can take
a look at http://en.wikipedia.org/wiki/Extended_display_identification_data

If the board is not able to read the EDID, for whatever reason, it does not have this information. A few possible
reasons for this are:

• Bad cable

• Cable not plugged in all the way on both ends

• Display not powered on. (It should still work powered off, but some displays do not).

DISPLAY SOURCE SELECTION One easy thing to overlook is that you need to select the display source that
matches the port you are using on the TV. Some displays may auto select, so you may need to disconnect the
other inputs until you are sure the display works with the board.

OUT OF SEQUENCE Sometimes the display and the board can get confused. One way to prevent this is after
everything is cabled up and running, you can power cycle the display, with the board still running. You can
also try resetting the board and let it reboot to resync with the TV.

OVERSCAN Some displays use what is called overscan. This can be seen in TVs and not so much on Monitors.
It causes the image to be missing on the edges, such that you cannot see them displayed. Some higher end
displays allow you to disable overscan.

Most TVs have a mode that allows you to adjust the image. These are options like Normal, Wide, Zoom, or Fit.
Normal seems to be the best option as it does not chop of the edges. The other ones will crop of the edges.

Taking a Nap In some cases the board can come up in a power down/screen save mode. No display will
be present. This is due to the board believing that it is asleep. To come out of this, you will need to hit the
keyboard or move the mouse.

Once working, the board will time out and go back to sleep again. This can cause the display to go into a power
down mode as well. You may need to turn the display back on again. Sometimes, it may take a minute or so
for the display to catch up and show the image.

AUDIO Audio will only work on TV resolutions. This is due to the way the specification was written. Some
displays have built in speakers and others require external. Make sure you have a TV resolution and speakers
are connected if they are not built in. The SW should default to a TV resolution giving audio support. The HDMI
driver should default to the highest audio supported resolution.

Getting Help If you need some up to date troubleshooting techniques, we have a Wiki set up at http://elinux.
org/Beagleboard:BeagleBoneBlack_HDMI

2.3 BeagleBone Blue

To optimize BeagleBone for education, BeagleBone Blue was created that integrates many components for
robotics and machine control, including connectors for off-the-shelf robotic components. For education, this
means you can quickly start talking about topics such as programming and control theory, without needing

110 Chapter 2. Boards

http://www.elinux.org/Beagleboard:BeagleBoneBlack#Software_Resources
http://en.wikipedia.org/wiki/Extended_display_identification_data
http://elinux.org/Beagleboard:BeagleBoneBlack_HDMI
http://elinux.org/Beagleboard:BeagleBoneBlack_HDMI

BeagleBoard Docs, Release 1.0.20230308-wip

to spend so much time on electronics. The goal is to still be very hackable for learning electronics as well,
including being fully open hardware.

BeagleBone Blue’s legacy is primarily from contributions to BeagleBone Black robotics by UCSD Flow Control
and Coordinated Robotics Lab, Strawson Design, Octavo Systems, WowWee, National Instruments LabVIEW
and of course the BeagleBoard.org Foundation.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

2.3.1 BeagleBone Blue Pinouts

2.3. BeagleBone Blue 111

http://robotics.ucsd.edu/
http://robotics.ucsd.edu/
http://www.strawsondesign.com/
http://octavosystems.com/
http://www.wowwee.com/mip/
http://www.ni.com/labview/
https://beagleboard.org/about
http://creativecommons.org/licenses/by-sa/4.0/

BeagleBoard Docs, Release 1.0.20230308-wip

• Connector pinout details from schematic(s)

• Pin Table with some Blue : Black corelation.

UT1

UART (/dev/ttyS1)

config-pin P9.24 uart
config-pin P9.26 uart

GPS

UART (/dev/ttyS2)

config-pin P9.21 uart
config-pin P9.22 uart

2.3.2 SSH

If you don’t have ssh installed, install it. (google is your friend) Then ssh debian@192.168.7.2 The board will
tell you what the password is, on my it was temppwd.

To change your password use the command password it will ask you what your current password is, then ask
for the replacement. Then it will say it was too simple and you have to do it again. Normal stuff.

If you want to insist on using your simple password, try this.

sudo -s
(become superuser/root)
enter your password
password debian
(put your simple password in)

(continues on next page)

112 Chapter 2. Boards

https://git.beagleboard.org/beagleboard/beaglebone-blue/-/blob/master/BeagleBone_Blue_sch.pdf
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/blob/master/BeagleBone_Blue_Pin_Table.csv

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

exit
(exit from superuser/root)

When you are running as root, password is more compliant and will accept simple password

2.3.3 WiFi Setup

On my network, I’m set up as ip 192.168.1.*. To turn your wifi on, do the following.

sudo -s
(become superuser/root)
cd /etc/network/
ifconfig
(Note the wifi inet address, if it is already set, you are done!)
connmanctl
tether wifi off
enable wifi
scan wifi
services
(at this point you should see your network appear along with other stuff, in␣
↪→my case it was ”AR Crystal wifi_f45eab2f1ee1_6372797774616c_managed_psk”)
nano interfaces
(or whatever editor you like)
remove the comment # from the wifi lines so it now appears like
##connman: WiFi
#
connmanctl
connmanctl> tether wifi off
connmanctl> enable wifi
connmanctl> scan wifi
connmanctl> services
connmanctl> agent on
connmanctl> connect wifi_f45eab2f1ee1_6372797774616c_managed_psk
connmanctl> quit
exit
note that you will need to fill in your own network data

2.3.4 IP settings

You will usually want to have a fixed ip if you are doing robotics, so you have a standard ip to connect to. If you
are already connected in dhcp you can borrow some of the settings from that to use in your new configurations.

route

make a note of the default one, (in the example below 192.168.1.1)

cat /etc/resolv.conf

make a note of the nameserver, (in the example below 8.8.8.8)

In my case I wanted 192.168.1.7 to do this,

sudo -s
connmanctl config wifi_f45eab2f1ee1_6372797774616c_managed_psk --ipv4 manual␣
↪→192.168.1.7 255.255.255.0 192.168.1.1 --nameservers 8.8.8.8
exit

the –ipv4 says to use ipv4 settings (as opposed to ipv6), the manual means we are setting the values.
192.168.1.7 is the ip address we want. (use your own of course). 255.255.255.0 is the network mask

2.3. BeagleBone Blue 113

BeagleBoard Docs, Release 1.0.20230308-wip

192.168.1.1 is the route to the internet. (You’re might be different, but this is common). –nameservers 8.8.8.8
says where to find the ip address for a given domain name. the 8.8.8.8 says use’s googles

2.3.5 Flashing Firmware

Overview

Most Beaglebones have a built in 4 GB SD card known as a eMMC (embedded MMC). When the boards are made
the eMMC is “flashed” with some version of the BeagleBone OS that is usually outdated. Therefore, whenever
receiving the BeagleBone it is recommend that you update the eMMC with the last version of the BeagleBone
OS or a specific version of it if someone tells you otherwise.

Required Items

1. Micro sd card. 4 GB minimum

2. Micro sd card reader or a built in sd card reader for your PC

3. BeagleBone image you want to flash.

4. Etcher utility for your PC’s OS.

Steps Overview

1. Burn the image you want to flash onto a micro sd card using the Etcher utility.

2. Boot the BeagleBone like normal and place the micro sd card into the board once booted.

3. Update the micro sd card image so its in “flashing” mode.

4. Insert micro sd card, remove power from the BeagleBone, hold sd card select button, power up board

5. Let the board flash

Windows PCs

1. Download the BeagleBone OS image you want to use.

2. Use the Etcher utility to burn the BeagleBone image you want to use on the micro sd card you plan on
using.

3. Make sure you don’t have the micro sd card plugged into your board.

4. Boot the board

5. Connect to the board via serial or ssh so that your on the command prompt.

6. Plug the micro sd card into the board.

7. Type dmesg in the terminal window

8. The last line from the output should say something like (the numbering may differ slightly):

• ”[2805.442940] mmcblk0: p1”

9. You want to take the above and combine it together by removing the : and space. For the above example
it will change to “mmcblk0p1”

10. In the terminal window enter the following commands:

114 Chapter 2. Boards

https://etcher.io/
https://www.beagleboard.org/distros
https://etcher.io/

BeagleBoard Docs, Release 1.0.20230308-wip

mkdir sd_tmp
sudo mount /dev/mmcblk0p1 sd_tmp
sudo su
echo ”cmdline=init=/opt/scripts/tools/eMMC/init-eMMC-flasher-v3.sh” >> sd_
↪→tmp/boot/uEnv.txt
exit
sudo umount sd_tmp

11. Now power off your board

12. Hold the update button labeled SD (the one by itself) to boot off the sdcard.

13. Restart (RST button) or power up (while still pushing SD button).

Flashing can take some minutes. ## Linux/Mac PCs 1. Download the BeagleBone OS image you want to
use. 1. Use the Etcher utility to burn the BeagleBone image you want to use on the micro sd card you
plan on using. 1. On the SD card edit the file /boot/uEnv.txt in order for the SD card contents to
be flashed onto the firmware eMMC. (Otherwise the BBBL will do no more than boot the SD image.) Un-
comment the line containing init-eMMC-flasher-v<number>.sh either manually or using these
commands substituting X with what your SD card shows in /dev/: * sudo mount /dev/emmcblkXp1
/mnt * cd /mnt * sed -i 's_#[]*\(cmdline=init=/opt/scripts/tools/eMMC/
init-eMMC-flasher-v[0-9]\+.*\.sh\)_\1_' boot/uEnv.txt

1. Eject the sdcard from your computer.

2. Put it into your BeagleBoneBlue.

3. If your board was already powered on then power it off

4. Hold the update button labeled SD (the one by itself) to boot off the sdcard.

5. Restart (RST button) or power up (while still pushing SD button).

Flashing can take some minutes.

How to tell if it is flashing? At first a blue heartbeat is shown indicating the image is booted. On flash
procedure start, the blue user LEDs light up in a “larson scanner” or “cylon” pattern (back and forth).

When finished, either all blue LEDs are on or the board is already switched off.

If the LEDs are on for a long time then it may indicate failure e.g. wrong image. Can be verified if boot fails,
i.e. board turns off again shortly after power up.

2.3.6 Play with the code

The board has some code built in to the system that can allow you to try out the various options. They all start
with rc

rc_balance rc_dsm_passthrough rc_test_encoders
rc_battery_monitor rc_kill rc_test_filters
rc_benchmark_algebra rc_spi_loopback rc_test_imu
rc_bind_dsm rc_startup_routine rc_test_motors
rc_blink rc_test_adc rc_test_polynomial
rc_calibrate_dsm rc_test_algebra rc_test_servos
rc_calibrate_escs rc_test_barometer rc_test_time
rc_calibrate_gyro rc_test_buttons rc_test_vector
rc_calibrate_mag rc_test_cape rc_uart_loopback
rc_check_battery rc_test_dmp rc_version
rc_check_model rc_test_drivers
rc_cpu_freq rc_test_dsm

Try them out to try out the various functions of the board. The source code for these tests and demos is at
Robotics cape installer at github

2.3. BeagleBone Blue 115

https://www.beagleboard.org/distros
https://etcher.io/
https://github.com/StrawsonDesign/Robotics_Cape_Installer

BeagleBoard Docs, Release 1.0.20230308-wip

2.3.7 BeagleBone Blue tests

ADC

• Grove Rotary Angle Sensor See output on adc_1 source

rc_test_adc

GP0

• Grove single GPIO output modules like LED Socket Kit

cd /sys/class/gpio;echo 49 >export;cd gpio49;echo out >direction;while sleep␣
↪→1;do echo 0 >value;sleep 1;echo 1 >value;done

• Grove single GPIO input modules like IR Distance Interrupter or Touch Sensor

cd /sys/class/gpio;echo 49 >export;cd gpio49;echo in >direction;watch -n0␣
↪→cat value

GP1

• Grove single GPIO output modules like LED Socket Kit

cd /sys/class/gpio;echo 97 >export;cd gpio97;echo out >direction;while sleep␣
↪→1;do echo 0 >value;sleep 1;echo 1 >value;done

• Grove single GPIO input modules like IR Distance Interrupter or Touch Sensor

cd /sys/class/gpio;echo 97 >export;cd gpio97;echo in >direction;watch -n0␣
↪→cat value

UT1

• Grove GPS

tio /dev/ttyO1 -b 9600

GPS

• GPS Receiver - EM-506

tio /dev/ttyO2 -b 4800

I2C

Grove I2C modules The Linux kernel source has some basic IIO SYSFS interface documentation which might
provide a little help for understanding reading these entries. The ELC2017 conference also had an IIO presen-
tation.

• Digital Light Sensor

cd /sys/bus/i2c/devices/i2c-1;echo tsl2561 0x29 >new_device;watch -n0 cat 1-
↪→0029/iio\:device0/in_illuminance0_input

116 Chapter 2. Boards

http://wiki.seeed.cc/Grove-Rotary_Angle_Sensor/
https://git.beagleboard.org/beagleboard/librobotcontrol/-/blob/v1.1/examples/src/rc_test_adc.c
http://wiki.seeed.cc/Grove-LED_Socket_Kit/
http://wiki.seeed.cc/Grove-IR_Distance_Interrupter_v1.2/
http://wiki.seeed.cc/Grove-Touch_Sensor/
http://wiki.seeed.cc/Grove-LED_Socket_Kit/
http://wiki.seeed.cc/Grove-IR_Distance_Interrupter_v1.2/
http://wiki.seeed.cc/Grove-Touch_Sensor/
http://wiki.seeed.cc/Grove-GPS/
https://www.sparkfun.com/products/12751
https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-bus-iio
http://elinux.org/images/b/ba/ELC_2017_-_Industrial_IO_and_You-_Nonsense_Hacks%21.pdf
http://elinux.org/images/b/ba/ELC_2017_-_Industrial_IO_and_You-_Nonsense_Hacks%21.pdf
http://wiki.seeed.cc/Grove-Digital_Light_Sensor/

BeagleBoard Docs, Release 1.0.20230308-wip

• Temperature & Humidity Sensor

cd /sys/bus/i2c/devices/i2c-1;echo th02 0x40 >new_device;watch -n0 cat 1-
↪→0040/iio\:device0/in_temp_raw

Motors

rc_test_motors

2.3.8 Accessories

Note: #TODO#: We are going to work on a unified accessories page for all the boards and it should replace
this.

Chassis and kits

• EduMIP

• Pololu Romi Chassis with geared motors

– Wheel encoders

– Chassis - Black

• Sprout Runt Rover

Cases

Cable assemblies and sub-assemblies

Beware; purchased pre-made connector assembly wire colors may not reflect true pin designations. These
assemblies are readily available from Digi-Key, SparkFun, Hobby King, Pololu and Cables and Connectors.

JST Connector Bundle

Renaissance Robotics JST Jumper Bundle

Four of the 2-pin JST ZH (1.5mm pitch) connectors, with 150mm 28AWG wires, for motors,
Eight of the 4-pin JST SH (1mm pitch) connectors, with 150mm 28AWG wires, for encoders, UART, I2C, CAN,
PWR, and
Four of the 6-pin JST SH (1mm pitch) connectors, with 150mm 28AWG wires, for SPI, GPS, GPIO, ADC.
Renaissance Robotics JST Jumper Bundle

Conrad BeagleBoard Kabel BB-Blue-Kabelset

10x 4-Pin JST-SH
6x 6-Pin JST-SH
4x 2-Pin JST-ZH
1x 3-Pin JST-ZH
BeagleBoard Kabel BB-Blue-Kabelset (Conrad.de)

2.3. BeagleBone Blue 117

http://wiki.seeed.cc/Grove-TemptureAndHumidity_Sensor-High-Accuracy_AndMini-v1.0/
https://www.renaissancerobotics.com/edumip.html
https://www.pololu.com/category/202/romi-chassis-and-accessories
https://www.pololu.com/product/3542
https://www.pololu.com/product/3500
https://www.servocity.com/sprout
https://www.digikey.com
https://sparkfun.com
https://hobbyking.com
https://www.pololu.com
http://cablesandconnectors.com
https://www.renaissancerobotics.com/JST_Jumper_Bundle.html
https://www.conrad.de/de/beagleboard-kabel-bb-blue-kabelset-1606596.html

BeagleBoard Docs, Release 1.0.20230308-wip

UART, I2C, CAN, Quadrature encoders, PWR

4-wire JST-SH (1mm pitch)

• 4-wire Grove cable (Digi-Key)

• Hobby King SKU 258000190-0

• SparkFun PN 10359

• Cables and Connectors 4” ribbon PN #4904

• Digi-Key wires

• Digi-Key housings

SPI, GPIO, ADC

6-wire JST-SH (1mm pitch)

• Hobby King SKU 258000192-0

• SparkFun PN 10361

• Cables and Connectors 50cm length PN #49406

• Digi-Key wires

• Digi-Key housings

• 6-wire Grove cable (4 populated) (Digi-Key)

Motors

2-wire JST-ZH (1.5mm pitch)

• Digi-Key wires

• Digi-Key receptacle

DSM

3-wire JST-ZH (1.5mm pitch)

• Pololu PN# 2411

microUSB standard

Batteries 2S1P LiPo with 3-wire JST-XH (2.5mm pitch) charge connection

• Hobby King 1000mAh 2S 20C LiPo

• Hobby King 1600mAh 2S 20C LiPo

Power supplies

12V with 5.5mm/2.1mm center positive

• Jameco: supply and power cord

• Hobby King 12V 3A supply

118 Chapter 2. Boards

https://www.seeedstudio.com/Grove-Universal-4-Pin-to-BeagleBone-Blue-4-Pin-Female-JST-SH-Convertion-Cable-(10-pcs-pack)-p-3026.html
https://www.digikey.com/product-detail/en/seeed-technology-co-ltd/114991495/1597-1622-ND/8558386
https://hobbyking.com/en_us/jst-sh-4pin-male-with-pig-tail.html
https://www.sparkfun.com/products/10359
http://www.cablesandconnectors.com/search/search.php?k=49404
https://www.digikey.com/products/en?keywords=ASSHSSH28K305
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SHR-04V-S-B/455-1379-ND/759868
https://hobbyking.com/en_us/jst-sh-6pin-male-with-pig-tail.html
https://www.sparkfun.com/products/10361
http://www.cablesandconnectors.com/search/search.php?k=49406
https://www.digikey.com/products/en?keywords=ASSHSSH28K305
https://www.digikey.com/product-detail/en/jst-sales-america-inc/SHR-06V-S-B/455-1381-ND/759870
https://www.seeedstudio.com/Grove-Universal-4-Pin-to-BeagleBone-Blue-6-Pin-Female-JST-SH-Convertion-Cable-(10-pcs-pack)-p-3027.html
https://www.digikey.com/product-detail/en/seeed-technology-co-ltd/114991496/1597-1623-ND/8558387
http://www.digikey.com/product-detail/en/jst-sales-america-inc/ASZHSZH28K152/455-3079-ND/6009455
http://www.digikey.com/product-detail/en/jst-sales-america-inc/ZHR-2/455-1366-ND/566476
https://www.pololu.com/product/2411
https://hobbyking.com/en_us/turnigy-1000mah-2s-20c-lipo-pack.html
https://hobbyking.com/en_us/turnigy-1600mah-2s-20c-losi-mini-sct-pack-part-losb1212.html
http://www.jameco.com/z/TR9CE4100LCP-A-Globtek-50W-12V-4-16A-AC-to-DC-Regulated-Switching-Wall-Adapter_2229247.html?CID=GOOG&gclid=CL-2js2-n9ICFQQdaQodMgsLMA
http://www.jameco.com/webapp/wcs/stores/servlet/ProductDisplay?search_type=jamecoall&catalogId=10001&freeText=38050&langId=-1&productId=38050&storeId=10001&ddkey=http:StoreCatalogDrillDownView
https://hobbyking.com/en_us/12v-3a-interchangeable-plug-adapter.html

BeagleBoard Docs, Release 1.0.20230308-wip

Motors

Servo motors 6V DC

• Parallax Inc. 900-00005 Standard Servo

• Hobby King SKU HD-1900A

• TowerPro SG92R-7

DC motors 6V, typically geared

• SparkFun Hobby Gearmotor - 200 RPM (Pair)

• SparkFun Hobby Motor - Gear

Radio remotes

• Hobby King OrangeRX satellite receiver

• Spektrum DSM2 Remote Receiver

GPS

• Sparkfun GPS Receiver - EM-506 (48 Channel)

• Adafruit Ultimate GPS breakout

• Ublox Neo-M8N GPS with Compass

• SeeedStudio Grove - GPS

Replacement antennas

• LSR PIFA

• LSR Dipole: antenna and cable

• Anaren U.FL 2.4GHz 6MM Antenna

• TI approved antennas

USB devices

USB cameras

• Logitech C270

• Logitech C920

SPI devices

SPI TFT displays

• Adafruit 2.4” LCD breakout

I2C devices

• See :ref:‘One-Liner-Module-Tests#i2c <beaglebone-blue-one-liner-tests>‘__

• See Using I2C with Linux drivers.

2.3. BeagleBone Blue 119

http://www.digikey.com/product-detail/en/900-00005/900-00005-ND/361277?WT.mc_id=IQ_7595_G_pla361277&wt.srch=1&wt.medium=cpc&WT.srch=1&gclid=CJz-qdC9n9ICFRO4wAodOjYLuQ
https://hobbyking.com/en_us/power-hd-1900a-servo-1-7kg-0-08sec-9g.html
http://www.towerpro.com.tw/product/sg92r-7/
https://www.sparkfun.com/products/13302
https://www.sparkfun.com/products/11696
https://hobbyking.com/en_us/orangerx-r110x-dsmx-dsm2-compatible-satellite-receiver.html
https://www.spektrumrc.com/Products/Default.aspx?ProdID=SPM9545
https://www.sparkfun.com/products/12751
https://www.adafruit.com/product/746
https://hobbyking.com/en_us/ublox-neo-m8n-gps-with-compass.html
https://www.seeedstudio.com/Grove-GPS-p-959.html
https://www.digikey.com/product-detail/en/laird-wireless-thermal-systems/001-0014/001-0014-ND/4732758
https://www.digikey.com/product-detail/en/laird-wireless-thermal-systems/001-0001/001-0001-ND/2696493
https://www.digikey.com/product-detail/en/lsr/080-0001/080-0001-ND/2696495
http://www.digikey.com/product-detail/en/anaren/66089-2406/1173-1024-ND/3069146
http://www.ti.com/lit/ug/swru437/swru437.pdf
https://www.amazon.com/Logitech-Desktop-Widescreen-Calling-Recording/dp/B004FHO5Y6
https://www.amazon.com/Logitech-Widescreen-Calling-Recording-Desktop/dp/B006JH8T3S
https://www.adafruit.com/products/2478

BeagleBoard Docs, Release 1.0.20230308-wip

UART devices

Computer serial adapters

• Sparkfun FTDI Cable 5V VCC-3.3V I/O

• Adafruit FTDI Serial TTL-232 USB Cable

Bluetooth devices

• WowWee Groove Cube Speaker

2.3.9 Frequently Asked Questions (FAQs)

Are there any books to help me get started?

The book BeagleBone Robotic Projects, Second Edition specifically covers how to get started building robots
with BeagleBone Blue.

For more general books on BeagleBone, Linux and other related topics, see https://beagleboard.org/books.

What system firmware should I use for starting to explore my BeagleBone Blue?

Download the latest ‘IoT’ image from https://www.beagleboard.org/distros. As of this writing, that image is
https://debian.beagleboard.org/images/bone-debian-9.5-iot-armhf-2018-10-07-4gb.img.xz.

Use http://etcher.io for writing that image to a 4GB or larger microSD card.

Power-up your BeagleBone Blue with the newly created microSD card to run this firmware image.

What is the name of the access point SSID and password default on BeagleBone Blue?

SSID: BeagleBone-XXXX where XXXX is based upon the board’s assigned unique hardware address
Password: BeagleBone

I’ve connected to BeagleBone Blue’s access point. How do I get logged into the board?

Browse to http://192.168.8.1:3000 to open the Cloud9 IDE and get access to the Linux command prompt.

If you’ve connected via USB instead, the address will be either http://192.168.6.2:3000 or http://192.168.7.2:
3000, depending on the USB networking drivers provided by your operating system.

How do I connect BeagleBone Blue to my own WiFi network?

From the bash command prompt in Linux:

sudo -s (become superuser/root)

connmanctl
connmanctl> tether wifi off (not really necessary on latest images)
connmanctl> enable wifi (not really necessary)
connmanctl> scan wifi
connmanctl> services (at this point you should see your network
appear along with other stuff, in my case it was ”AR Crystal wifi_

↪→f45eab2f1ee1_6372797774616c_managed_psk”)
connmanctl> agent on

(continues on next page)

120 Chapter 2. Boards

https://www.sparkfun.com/products/9717
https://www.adafruit.com/product/70
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/One-Liner-Module-Tests#grove-i2c-modules
https://github.com/jadonk/BeagleBone-Robotic-Projects-Second-Edition
https://beagleboard.org/books
https://www.beagleboard.org/distros
https://debian.beagleboard.org/images/bone-debian-9.5-iot-armhf-2018-10-07-4gb.img.xz
http://etcher.io
http://192.168.8.1:3000
http://192.168.6.2:3000
http://192.168.7.2:3000
http://192.168.7.2:3000

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

connmanctl> connect wifi_f45eab2f1ee1_6372797774616c_managed_psk
connmanctl> quit

Where can I find examples and APIs for programming BeagleBone Blue?

Programming in C: http://www.strawsondesign.com/#!manual-install

Programming in Python: https://github.com/mcdeoliveira/rcpy

Programming in Simulink: https://www.mathworks.com/hardware-support/beaglebone-blue.html

My BeagleBone Blue fails to run successful tests

You’ve tried to run rc_test_drivers to ensure your board is working for DOA warranty tests, but it errors.
You should first look to fixing your bootloader as described http://strawsondesign.com/docs/librobotcontrol/
installation.html#installation_s5

I’m running an image off of a microSD card. How do I write it to the on-board eMMC flash?

Refer to the “Flashing Firmware” page: https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/
Flashing-firmware

Meanwhile, as root, run the /opt/scripts/tools/eMMC/bbb-eMMC-flasher-eewiki-ext4.sh script which will create
a copy of the system in your microSD to a new single ext4 partition on the on-board eMMC.

I’ve written the latest image to a uSD card, but some features aren’t working. How do I make it
run properly?

It is possible you are running an old bootloader off of the eMMC. While power is completely off, hold the SD
button (near the servo headers) while applying power. You can release the button as soon the power LED
comes on. This will make sure the bootloader is loaded from microSD and not eMMC.

Verify the running image using version.sh via:

sudo /opt/scripts/tools/version.sh

The version.sh output will tell you which version of bootloader is on the eMMC or microSD. Future versions of
version.sh might further inform you if the SD button was properly asserted on power-up.

One you’ve booted the latest image, you can update the bootloader on the eMMC using
/opt/scripts/tools/developers/update_bootloader.sh. Better yet, read the above FAQ on flashing firmware.

I’ve got my on-board eMMC flash configured in a nice way. How do I copy that to other BeagleBone
Blue boards?

As root, run the /opt/scripts/tools/eMMC/beaglebone-black-make-microSD-flasher-from-eMMC.sh script with a
blank 4GB or larger microSD card installed and wait for the script to complete execution.

Remove the microSD card.

Boot your other BeagleBone Blue boards off of this newly updated microSD card and wait for the flashing
process to complete. You’ll know it successfully started when you see the “larson scanner” running on the
LEDs. You’ll know it successfully completed when it shuts off the board.

Remove the microSD card.

Reboot your newly flashed board.

2.3. BeagleBone Blue 121

http://www.strawsondesign.com/#!manual-install
https://github.com/mcdeoliveira/rcpy
https://www.mathworks.com/hardware-support/beaglebone-blue.html
http://strawsondesign.com/docs/librobotcontrol/installation.html#installation_s5
http://strawsondesign.com/docs/librobotcontrol/installation.html#installation_s5
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/Flashing-firmware
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/Flashing-firmware
https://github.com/RobertCNelson/boot-scripts/blob/master/tools/version.sh
https://github.com/RobertCNelson/boot-scripts/issues/93
https://github.com/RobertCNelson/boot-scripts/blob/master/tools/developers/update_bootloader.sh
https://git.beagleboard.org/beagleboard/beaglebone-blue/-/wikis/Frequently-Asked-Questions-(FAQ)#Im_running_an_image_off_of_a_microSD_card_How_do_I_write_it_to_the_onboard_eMMC_flash
https://github.com/RobertCNelson/boot-scripts/blob/master/tools/eMMC/beaglebone-black-make-microSD-flasher-from-eMMC.sh

BeagleBoard Docs, Release 1.0.20230308-wip

I have some low-latency I/O tasks. How do I get started programming the BeagleBone PRUs?

There is a “Hello, World” app at https://gist.github.com/jadonk/2ecf864e1b3f250bad82c0eae12b7b64 that will
get you blinking the USRx LEDS.

The libroboticscape software provides examples that are pre-built and included in the BeagleBone Blue soft-
ware images for running the servo/ESC outputs and fourth quadrature encoder input. You can use those
firmware images as a basis for building your own: https://github.com/StrawsonDesign/Robotics_Cape_Installer/
tree/master/pru_firmware

You can find some more at https://beagleboard.org/pru

Are there available mechanical models?

A community contributed model is available at https://grabcad.com/library/beaglebone-blue-1

What is the operating temperature range?

‘0..70‘ due to processor, else ‘-20..70‘

What is the DC motor drive strength?

This is dictated by the 2 cell LiPo battery input, the TB6612FNG motor drivers and the JST-ZH connectors

• Voltage: 6V-8.4V (typical)

• Current: 1A (maximum for connectors) / 1.2A (maximum average from drivers) / 3.2A (peak from drivers)
per channel

2.4 BeagleBone AI

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

All derivative works are to be attributed to Jason Kridner of BeagleBoard.org.

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

2.4.1 Introduction

Built on the proven BeagleBoard.org® open source Linux approach, BeagleBone® AI fills the gap between
small SBCs and more powerful industrial computers. Based on the Texas Instruments AM5729, developers
have access to the powerful SoC with the ease of BeagleBone® Black header and mechanical compatibility.
BeagleBone® AI makes it easy to explore how artificial intelligence (AI) can be used in everyday life via TI C66x
digital-signal-processor (DSP) cores and embedded-vision-engine (EVE) cores supported through an optimized
TIDL machine learning OpenCL API with pre-installed tools. Focused on everyday automation in industrial,
commercial and home applications.

122 Chapter 2. Boards

https://gist.github.com/jadonk/2ecf864e1b3f250bad82c0eae12b7b64
https://github.com/StrawsonDesign/Robotics_Cape_Installer
https://github.com/StrawsonDesign/Robotics_Cape_Installer/tree/master/pru_firmware
https://github.com/StrawsonDesign/Robotics_Cape_Installer/tree/master/pru_firmware
https://beagleboard.org/pru
https://grabcad.com/library/beaglebone-blue-1
http://www.pololu.com/file/0J86/TB6612FNG.pdf
http://www.jst-mfg.com/product/detail_e.php?series=287
http://creativecommons.org/licenses/by-sa/4.0/
https://beagleboard.org/about/jkridner

BeagleBoard Docs, Release 1.0.20230308-wip

2.4.2 Change History

Rev A0

Initial prototype revision. Not taken to production. eMMC flash image provided by Embest.

Rev A1

Second round prototype.

• Fixed size of mounting holes.

• Added LED for WiFi status.

• Added microHDMI.

• Changed eMMC voltage from 3.3V to 1.8V to support HS200.

• Changed eMMC from 4GB to 16GB.

• Changed serial debug header from 6-pin 100mil pitch to 3-pin 1.5mm pitch.

• Switched expansion header from UART4 to UART5. The UART4 pins were used for the microHDMI.

eMMC flash image provided by Embest.

Rev A1a

Alpha pilot-run units and initial production.

• Added pull-down resistor on serial debug header RX line.

2.4. BeagleBone AI 123

https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/24

BeagleBoard Docs, Release 1.0.20230308-wip

Alpha pilot-run eMMC flash image: https://debian.beagleboard.org/images/bbai-pilot-20190408.img.xz

Production eMMC flash image: http://debian.beagleboard.org/images/am57xx-eMMC-flasher-debian-9.
9-lxqt-armhf-2019-08-03-4gb.img.xz

Rev A2

Proposed changes.

• HW: need pull-down on console uart RX line.

• HW: position of microSD may impact existing case designs.

• HW: P9.13 does not have a GPIO.

• HW: HDMI hotplug detection not working.

• HW: add extra DCAN.

• HW: wire mods required to enable JTAG.

• HW: Small I2C nvmem/eeprom for board identifier.

2.4.3 Connecting Up Your BeagleBone AI

What’s In the Box

BeagleBone® AI comes in the box with the heat sink and antenna already attached. Developers can get up
and running in five minutes with no microSD card needed. BeagleBone® AI comes preloaded with a Linux
distribution. In the box you will find:

• BeagleBone® AI

• Quick Start Guide

TODO: Add links to the design materials for both

What’s Not in the Box

You will need to purchase:

124 Chapter 2. Boards

https://debian.beagleboard.org/images/bbai-pilot-20190408.img.xz
http://debian.beagleboard.org/images/am57xx-eMMC-flasher-debian-9.9-lxqt-armhf-2019-08-03-4gb.img.xz
http://debian.beagleboard.org/images/am57xx-eMMC-flasher-debian-9.9-lxqt-armhf-2019-08-03-4gb.img.xz
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/24
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/25
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/issues/22
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/19
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/20
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/21
https://git.beagleboard.org/beagleboard/beaglebone-ai/issues/23

BeagleBoard Docs, Release 1.0.20230308-wip

• USB C cable or USB C to USB A cable

• MicroSD Card (optional)

• Serial cable (optional)

More information or to purchase a replacement heat sink or antenna, please go to these websites:

• Antenna

• Heat Sink

Fans

The pre-attached heat sink has M3 holes spaced 20x20 mm. The height of the heat sink clears the USB type A
socket, and all other components on the board except the 46-way header sockets and the Ethernet socket.

If you run all of the accelerators or have an older software image, you’ll likely need fan. To find a fan, visit the
link to fans in the FAQ.

Caution: BeagleBone AI can run HOT! Even without running the accelerators, getting up to 70C is not
uncommon.

Official BeagleBone Fan Cape: https://www.newark.com/element14/6100310/beaglebone-ai-fan-cape/dp/
50AH3704

TODO: create short-links for any long URLs so that text works.

Main Connection Scenarios

This section will describe how to connect the board for use. The board can be configured in several different
ways. Below we will walk through the most common scenarios. NOTE: These connection scenarios are depen-
dent on the software image presently on your BeagleBone® AI. When all else fails, follow the instructions at
https://beagleboard.org/upgrade

• Tethered to a PC via USB C cable

• Standalone Desktop with powered USB hub, display, keyboard and mouse

• Wireless Connection to BeagleBone® AI

Tethered to a PC

The most common way to program BeagleBone® AI is via a USB connection to a PC. If your computer has a USB
C type port, BeagleBone® AI will both communicate and receive power directly from the PC. If your computer
does not support USB C type, you can utilize a powered USB C hub to power and connect to BeagleBone® AI
which in turn will connect to your PC. You can also use a powered USB C hub to power and connect peripheral
devices such as a USB camera. After booting, the board is accessed either as a USB storage device or via the
browser on the PC. You will need Chrome or Firefox on the PC.

NOTE:Start with this image “am57xx-eMMC-flasher-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz” loaded
on your BeagleBone® AI.

1. Locate the USB Type-C connector on BeagleBone® AI

2.4. BeagleBone AI 125

https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#serial-cable
https://bit.ly/2kmXAzF
https://bit.ly/2klxxJa
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#fans
https://www.newark.com/element14/6100310/beaglebone-ai-fan-cape/dp/50AH3704
https://www.newark.com/element14/6100310/beaglebone-ai-fan-cape/dp/50AH3704
https://beagleboard.org/upgrade

BeagleBoard Docs, Release 1.0.20230308-wip

2. Connect a USB type-C cable to BeagleBone® AI USB type-C port.

3. Connect the other end of the USB cable to the PC USB 3 port.

126 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

4. BeagleBone® AI will boot.

5. You will notice some of the 5 user LEDs flashing

6. Look for a new mass storage drive to appear on the PC.

7. Open the drive and open START.HTM with your web browser.

2.4. BeagleBone AI 127

BeagleBoard Docs, Release 1.0.20230308-wip

8. Follow the instructions in the browser window.

128 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

9. Go to Cloud9 IDE.

10. Open the directories in the left navigation of Cloud9.

2.4. BeagleBone AI 129

BeagleBoard Docs, Release 1.0.20230308-wip

Standalone w/Display and Keyboard/Mouse

Note: This configuration requires loading the latest debian 9 image from https://elinux.org/Beagleboard:
Latest-images-testing

130 Chapter 2. Boards

https://elinux.org/Beagleboard:Latest-images-testing
https://elinux.org/Beagleboard:Latest-images-testing

BeagleBoard Docs, Release 1.0.20230308-wip

Load “am57xx-eMMC-flasher-debian-9.13-lxqt-tidl-armhf-2020-08-25-6gb.img.xz” image on the BeagleBone®
AI

Presently, the “Cloud 9” application is broken in debian 10 only for this configuration. We re working on a better
solution.

1. Connect a combo keyboard and mouse to BeagleBone® AI’s USB host port.

2. Connect a microHDMI-to-HDMI cable to BeagleBone® AI’s microHDMI port.

3. Connect the microHDMI-to-HDMI cable to an HDMI monitor.

4. Plug a 5V 3A USB type-C power supply into BeagleBone® AI’s USB type-C port.

5. BeagleBone® AI will boot. No need to enter any passwords.

6. Depending on which software image is loaded, either a Desktop or a login shell will appear on themonitor.

7. Follow the instructions at https://beagleboard.org/upgrade

Wireless Connection

NOTE:Start with this image “am57xx-eMMC-flasher-debian-10.3-iot-tidl-armhf-2020-04-06-6gb.img.xz” loaded
on your BeagleBone® AI.

1. Plug a 5V 3A USB type-C power supply into BeagleBone® AI’s USB type-C port.

2. BeagleBone® AI will boot.

3. Connect your PC’s WiFi to SSID “BeagleBone-XXXX” where XXXX varies for your BeagleBone® AI.

4. Use password “BeagleBone” to complete the WiFi connection.

5. Open http://192.168.8.1 in your web browser.

6. Follow the instructions in the browser window.

Connecting a 3 PIN Serial Debug Cable

A 3 PIN serial debug cable can be helpful to debug when you need to view the boot messages through a terminal
program such as putty on your host PC. This cable is not needed for most BeagleBone® AI boot up scenarios.

Cables: https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#
serial-cable

Locate the 3 PIN debug header on BeagleBone® AI, near the USB C connection.

Press the small white connector into the 3 PIN debug header. The pinout is:

• Pin 1 (the pin closest to the screw-hole in the board. It is also marked with a shape on the silkscreen):
GND

• Pin 2: UART1_RX (i.e. this is a BB-AI input pin)

2.4. BeagleBone AI 131

https://beagleboard.org/upgrade
http://192.168.8.1
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#serial-cable
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/wikis/Frequently-Asked-Questions#serial-cable

BeagleBoard Docs, Release 1.0.20230308-wip

• Pin 3: UART1_TX (i.e. BB-AI transmits out on this pin)

2.4.4 BeagleBone AI Overview

132 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

BeagleBone® AI Features

Main Processor Features of the AM5729 Within BeagleBone® AI

• Dual 1.5GHz ARM® Cortex®-A15 with out-of-order speculative issue 3-way superscalar execution
pipeline for the fastest execution of existing 32-bit code

• 2 C66x Floating-Point VLIW DSP supported by OpenCL

• 4 Embedded Vision Engines (EVEs) supported by TIDL machine learning library

• 2x Dual-Core Programmable Real-Time Unit (PRU) subsystems (4 PRUs total) for ultra low-latency control
and software generated peripherals

• 2x Dual ARM® Cortex®-M4 co-processors for real-time control

• IVA-HD subsystem with support for 4K @ 15fps H.264 encode/decode and other codecs @ 1080p60

• Vivante® GC320 2D graphics accelerator

• Dual-Core PowerVR® SGX544™ 3D GPU

Communications

• BeagleBone Black header and mechanical compatibility

• 16-bit LCD interfaces

• 4+ UARTs

• 2 I2C ports

• 2 SPI ports

• Lots of PRU I/O pins

Memory

• 1GB DDR3L

• 16GB on-board eMMC flash

Connectors

• USB Type-C connector for power and SuperSpeed dual-role controller

• Gigabit Ethernet

• 802.11ac 2.4/5GHz WiFi via the AzureWave AW-CM256SM

Out of Box Software

• Zero-download out of box software environment

2.4. BeagleBone AI 133

BeagleBoard Docs, Release 1.0.20230308-wip

Board Component Locations

2.4.5 BeagleBone AI High Level Specification

This section provides the high level specification of BeagleBone® AI

Block Diagram

The figure below is the high level block diagram of BeagleBone® AI. For detailed layout information please
check the schematics.

134 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

AM572x Sitara™ Processor

The Texas Instruments AM572x Sitara™ processor family of SOC devices brings high processing performance
through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine
programmable video processing with a highly integrated peripheral set ideal for AI applications. The AM5729
used on BeagleBone® AI is the super-set device of the family.

Programmability is provided by dual-core ARM®Cortex®-A15 RISC CPUs with Arm®Neon™ extension, and two
TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with 4x EVEs). The Arm allows developers
to keep control functions separate from other algorithms programmed on the DSPs and coprocessors, thus
reducing the complexity of the system software.

Texas Instruments AM572x Sitara™ Processor Family Block Diagram*

2.4. BeagleBone AI 135

BeagleBoard Docs, Release 1.0.20230308-wip

MPU Subsystem The Dual Cortex-A15 MPU subsystem integrates the following submodules:

• ARM Cortex-A15 MPCore

– Two central processing units (CPUs)

– ARM Version 7 ISA: Standard ARM instruction set plus Thumb®-2, Jazelle® RCT Java™ accelerator,
hardware virtualization support, and large physical address extensions (LPAE)

– Neon™ SIMD coprocessor and VFPv4 per CPU

– Interrupt controller with up to 160 interrupt requests

– One general-purpose timer and one watchdog timer per CPU – Debug and trace features

– 32-KiB instruction and 32-KiB data level 1 (L1) cache per CPU

• Shared 2-MiB level 2 (L2) cache

136 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

• 48-KiB bootable ROM

• Local power, reset, and clock management (PRCM) module

• Emulation features

• Digital phase-locked loop (DPLL)

DSP Subsystems There are two DSP subsystems in the device. Each DSP subsystem contains the following
submodules:

• TMS320C66x™ Floating-Point VLIW DSP core for audio processing, and general-purpose imaging and
video processing. It extends the performance of existing C64x+™ and C647x™ DSPs through enhance-
ments and new features.

– 32-KiB L1D and 32-KiB L1P cache or addressable SRAM

– 288-KiB L2 cache

• 256-KiB configurable as cache or SRAM

• 32-KiB SRAM

• Enhanced direct memory access (EDMA) engine for video and audio data transfer

• Memory management units (MMU) for address management.

• Interrupt controller (INTC)

• Emulation capabilities

• Supported by OpenCL

EVE Subsystems

• 4 Embedded Vision Engines (EVEs) supported by TIDL machine learning library

2.4. BeagleBone AI 137

BeagleBoard Docs, Release 1.0.20230308-wip

The Embedded Vision Engine (EVE) module is a programmable imaging and vision processing engine. Software
support for the EVE module is available through OpenCL Custom Device model with fixed set of functions. More
information is available http://www.ti.com/lit/wp/spry251/spry251.pdf

PRU-ICSS Subsystems

• 2x Dual-Core Programmable Real-Time Unit (PRU) subsystems (4 PRUs total) for ultra low-latency control
and software generated peripherals. Access to these powerful subsystems is available through through
the P8 and P9 headers. These are detailed in Section 7.

IPU Subsystems There are two Dual Cortex-M4 IPU subsystems in the device available for general purpose
usage, particularly real-time control. Each IPU subsystem includes the following components:

• Two Cortex-M4 CPUs

• ARMv7E-M and Thumb-2 instruction set architectures

• Hardware division and single-cycle multiplication acceleration

• Dedicated INTC with up to 63 physical interrupt events with 16-level priority

• Two-level memory subsystem hierarchy

– L1 (32-KiB shared cache memory)

– L2 ROM + RAM

• 64-KiB RAM

• 16-KiB bootable ROM

• MMU for address translation

• Integrated power management

• Emulation feature embedded in the Cortex-M4

IVA-HD Subsystem

• IVA-HD subsystem with support for 4K @ 15fps H.264 encode/decode and other codecs @ 1080p60 The
IVA-HD subsystem is a set of video encoder and decoder hardware accelerators. The list of supported
codecs can be found in the software development kit (SDK) documentation.

BB2D Graphics Accelerator Subsystem The Vivante® GC320 2D graphics accelerator is the 2D BitBlt
(BB2D) graphics accelerator subsystem on the device with the following features:

• API support:

– OpenWF™, DirectFB

– GDI/DirectDraw

• BB2D architecture:

– BitBlt and StretchBlt

– DirectFB hardware acceleration

– ROP2, ROP3, ROP4 full alpha blending and transparency

– Clipping rectangle support

– Alpha blending includes Java 2 Porter-Duff compositing rules

– 90-, 180-, 270-degree rotation on every primitive

– YUV-to-RGB color space conversion

– Programmable display format conversion with 14 source and 7 destination formats

– High-quality, 9-tap, 32-phase filter for image and video scaling at 1080p

– Monochrome expansion for text rendering

– 32K × 32K coordinate system

138 Chapter 2. Boards

http://www.ti.com/lit/wp/spry251/spry251.pdf

BeagleBoard Docs, Release 1.0.20230308-wip

Dual-Core PowerVR® SGX544™ 3D GPU The 3D graphics processing unit (GPU) subsystem is based on
POWERVR® SGX544 subsystem from Imagination Technologies. It supports general embedded applications.
The GPU can process different data types simultaneously, such as: pixel data, vertex data, video data, and
general-purpose data. The GPU subsystem has the following features:

• Multicore GPU architecture: two SGX544 cores.

• Shared system level cache of 128 KiB

• Tile-based deferred rendering architecture

• Second-generation universal scalable shader engines (USSE2), multithreaded engines incorporating pixel
and vertex shader functionality

• Present and texture load accelerators

– Enables to move, rotate, twiddle, and scale texture surfaces.

– Supports RGB, ARGB, YUV422, and YUV420 surface formats.

– Supports bilinear upscale.

– Supports source colorkey.

• Fine-grained task switching, load balancing, and power management

• Programmable high-quality image antialiasing

• Bilinear, trilinear, anisotropic texture filtering

• Advanced geometry DMA driven operation for minimum CPU interaction

• Fully virtualized memory addressing for OS operation in a unified memory architecture (MMU)

Memory

1GB DDR3L Dual 256M x 16 DDR3L memory devices are used, one on each side of the board, for a total of
1 GB. They will each operate at a clock frequency of up to 533 MHz yielding an effective rate of 1066Mb/s on
the DDR3L bus allowing for 4GB/s of DDR3L memory bandwidth.

16GB Embedded MMC A single 16GB embedded MMC (eMMC) device is on the board.

microSD Connector The board is equipped with a single microSD connector to act as a secondary boot
source for the board and, if selected as such, can be the primary booth source. The connector will support
larger capacity microSD cards. The microSD card is not provided with the board.

Boot Modes

Power Management

Connectivity

BeagleBone® AI supports the majority of the functions of the AM5729 SOC through connectors or expansion
header pin accessibility. See section 7 for more information on expansion header pinouts. There are a few
functions that are not accessible which are: (TBD)

2.4. BeagleBone AI 139

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.22: On-board I2C Devices
Address Identifier Description
0x12 U3 TPS6590379 PMIC DVS
0x41 U78 STMPE811Q ADC and GPIO expander
0x47 U13 HD3SS3220 USB Type-C DRP port controller
0x50 U9 24LC32 board ID EEPROM
0x58 U3 TPS6590379 PMIC power registers
0x5a U3 TPS6590379 PMIC interfaces and auxiliaries
0x5c U3 TPS6590379 PMIC trimming and test
0x5e U3 TPS6590379 PMIC OTP

2.4.6 Detailed Hardware Design

This section provides a detailed description of the Hardware design. This can be useful for interfacing, writing
drivers, or using it to help modify specifics of your own design.

The figure below is the high level block diagram of BeagleBone® AI. For those who may be concerned, this is
the same figure found in section 5. It is placed here again for convenience so it is closer to the topics to follow.

Power Section

Figure ? is the high level block diagram of the power section of the board.

(Block Diagram for Power)

TPS6590379 PMIC The Texas Instruments TPS6590379ZWSR device is an integrated power-management
IC (PMIC) specifically designed to work well ARM Cortex A15 Processors, such as the AM5729 used on Beagle-
Bone® AI. The datasheet is located here https://www.ti.com/lit/ds/symlink/tps659037.pdf

140 Chapter 2. Boards

https://www.ti.com/lit/ds/symlink/tps659037.pdf

BeagleBoard Docs, Release 1.0.20230308-wip

The device provides seven configurable step-down converters with up to 6 A of output current for memory,
processor core, input-output (I/O), or preregulation of LDOs. One of these configurable step-down converters
can be combined with another 3-A regulator to allow up to 9 A of output current. All of the step-down converters
can synchronize to an external clock source between 1.7 MHz and 2.7 MHz, or an internal fallback clock at 2.2
MHz.

The TPS659037 device contains seven LDO regulators for external use. These LDO regulators can be supplied
from either a system supply or a preregulated supply. The power-up and power-down controller is configurable
and supports any power-up and power-down sequences (OTP based). The TPS659037 device includes a 32-
kHz RC oscillator to sequence all resources during power up and power down. In cases where a fast start up is
needed, a 16-MHz crystal oscillator is also included to quickly generate a stable 32-kHz for the system. All LDOs
and SMPS converters can be controlled by the SPI or I2C interface, or by power request signals. In addition,
voltage scaling registers allow transitioning the SMPS to different voltages by SPI, I2C, or roof and floor control.

One dedicated pin in each package can be configured as part of the power-up sequence to control external
resources. General-purpose input-output (GPIO) functionality is available and two GPIOs can be configured
as part of the power-up sequence to control external resources. Power request signals enable power mode
control for power optimization. The device includes a general-purpose sigma-delta analog-to-digital converter
(GPADC) with three external input channels.

USB-C Power Below image shows how the USB-C power input is connected to the TPS6590379.

2.4. BeagleBone AI 141

BeagleBoard Docs, Release 1.0.20230308-wip

Power Button

eMMC Flash Memory (16GB)

eMMC Device

eMMC Circuit Design

Board ID A board identifier is placed on the eMMC in the second linear boot partition (/dev/mmcblk1boot1).
Reserved bytes up to 32k (0x8000) are filled with “FF”.

Table 2.23: Board ID
Name Size (bytes) Contents
Header 4 MSB 0xEE3355AA LSB (stored LSB first)
Board Name 8 Name for board in ASCII “BBONE-AI” =

BeagleBone AI
Version 4 Hardware version code for board in ASCII

“00A1” = rev. A1
Serial Number 14 Serial number of the board. This is a 14

character string which is:
WWYYEMAInnnnnn
where:

• WW = 2 digit week of the year of
production

• YY = 2 digit year of production

• EM = Embest

• AI = BeagleBone AI

• nnnnnn = incrementing board
number

debian@beaglebone:/var/lib/cloud9$ sudo hexdump -C /dev/mmcblk1boot1
00000000 aa 55 33 ee 42 42 4f 4e 45 2d 41 49 30 30 41 31 |.U3.BBONE-
↪→AI00A1|
00000010 31 39 33 33 45 4d 41 49 30 30 30 38 30 33 ff ff |1933EMAI000803..
↪→|
00000020 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................
↪→|

(continues on next page)

142 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

*
00008000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
↪→|
*
00400000

Wireless Communication: 802.11 ac & Bluetooth: AzureWave AW-CM256SM

Datasheet https://storage.googleapis.com/wzukusers/user-26561200/documents/5b7d0fe3c3f29Ct6k0QI/
AW-CM256SM_DS_Rev%2015_CYW.pdf Wireless connectivity is provided on BeagleBone® AI via the Azure-
Wave Technologies AW-CM256SM IEEE 802.11a/b/g/n/ac Wi-Fi with Bluetooth 4.2 Combo Stamp Module.

This highly integrated wireless local area network (WLAN) solution combines Bluetooth 4.2 and provides a
complete 2.4GHz Bluetooth system which is fully compliant to Bluetooth 4.2 and v2.1 that supports EDR of
2Mbps and 3Mbps for data and audio communications. It enables a high performance, cost effective, low
power, compact solution that easily fits onto the SDIO and UART combo stamp module.

Compliant with the IEEE 802.11a/b/g/n/ac standard, AW-CM256SM uses Direct Sequence Spread Spectrum
(DSSS), Orthogonal Frequency Division Multiplexing (OFDM), BPSK, QPSK, CCK and QAM baseband modulation
technologies. Compare to 802.11n technology, 802.11ac provides a big improvement on speed and range.

The AW-CM256SM module adopts a Cypress solution. The module design is based on the Cypress CYP43455
single chip.

WLAN on the AzureWave AW-CM256SM High speed wireless connection up to 433.3Mbps transmit/receive
PHY rate using 80MHz bandwidth,

• 1 antennas to support 1(Transmit) and 1(Receive) technology and Bluetooth

• WCS (Wireless Coexistence System)

• Low power consumption and high performance

• Enhanced wireless security

• Fully speed operation with Piconet and Scatternet support

• 12mm(L) x 12mm(W) x1.65mm(H) LGA package

• Dual - band 2.4 GHz and 5GHz 802.11 a/b/g/n/ac

• External Crystal

Bluetooth on the AzureWave AW-CM256S

• 1 antennas to support 1(Transmit) and 1(Receive) technology and Bluetooth

• Fully qualified Bluetooth BT4.2

• Enhanced Data Rate(EDR) compliant for both 2Mbps and 3Mbps supported

• High speed UART and PCM for Bluetooth

HDMI

The HDMI interface is aligned with the HDMI TMDS single stream standard v1.4a (720p@60Hz to 1080p@24Hz)
and the HDMI v1.3 (1080p @60Hz): 3 data channels, plus 1 clock channel is supported (differential).

TODO: Verify it isn’t better than this. Doesn’t seem right.

2.4. BeagleBone AI 143

https://storage.googleapis.com/wzukusers/user-26561200/documents/5b7d0fe3c3f29Ct6k0QI/AW-CM256SM_DS_Rev%2015_CYW.pdf
https://storage.googleapis.com/wzukusers/user-26561200/documents/5b7d0fe3c3f29Ct6k0QI/AW-CM256SM_DS_Rev%2015_CYW.pdf

BeagleBoard Docs, Release 1.0.20230308-wip

PRU-ICSS

The Texas Instruments AM5729 Sitara™ provides 2 Programmable Real-Time Unit Subsystem and Industrial
Communciation Subsystems. (PRU-ICSS1 and PRU-ICSS2).

Within each PRU-ICSS are dual 32-bit Load / Store RISC CPU cores: Programmable Real-Time Units (PRU0
and PRU1), shared data and instruction memories, internal peripheral modules and an interrupt controller.
Therefore the SoC is providing a total of 4 PRU 32-bit RISC CPU’s:

• PRU-ICSS1 PRU0

• PRU-ICSS1 PRU1

• PRU-ICSS2 PRU0

• PRU-ICSS2 PRU1

The programmable nature of the PRUs, along with their access to pins, events and all SoC resources, provides
flexibility in implementing fast real-time responses, specialized data handling operations, peripheral interfaces
and in off-loading tasks from the other processor cores of the SoC.

PRU-ICSS Features Each of the 2 PRU-ICSS (PRU-ICSS1 and PRU-ICSS2) includes the followingmain features:

• 2 Independent programmable real-time (PRU) cores (PRU0 and PRU1)

• 21x Enhanced GPIs (EGPIs) and 21x Enhanced GPOs (EGPOs) with asynchronous capture and serial sup-
port per each PRU CPU core

• One Ethernet MII_RT module (PRU-ICSS_MII_RT) with two MII ports and configurable connections to PRUs

• 1 MDIO Port (PRU-ICSS_MII_MDIO)

• One Industrial Ethernet Peripheral (IEP) to manage/generate Industrial Ethernet functions

• 1 x 16550-compatible UART with a dedicated 192 MHz clock to support 12Mbps Profibus

• 1 Industrial Ethernet timer with 7/9 capture and 8 compare events

• 1 Enhanced Capture Module (ECAP)

• 1 Interrupt Controller (PRU-ICSS_INTC)

• A flexible power management support

• Integrated switched central resource with programmable priority

• Parity control supported by all memories

PRU-ICSS Block Diagram Below is a high level block diagram of one of the PRU-ICSS Subsystems

144 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

PRU-ICSS Resources and FAQ’s

Resources

• Great resources for PRU and BeagleBone® has been compiled here https://beagleboard.org/pru

• The PRU Cookbook provides examples and getting started information PRU Cookbook

• Detailed specification is available at http://processors.wiki.ti.com/index.php/PRU-ICSS

FAQ

• Q: Is it possible to configure the Ethernet MII to be accessed via a PRU MII?

• A: TBD

PRU-ICSS1 Pin Access The table below shows which PRU-ICSS1 signals can be accessed on BeagleBone®
AI and on which connector and pins they are accessible from. Some signals are accessible on the same pins.
Signal Names reveal which PRU-ICSS Subsystem is being addressed. pr1 is PRU-ICSS1 and pr2 is PRU-ICSS2

2.4. BeagleBone AI 145

https://beagleboard.org/pru
http://processors.wiki.ti.com/index.php/PRU-ICSS

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
bl
e
2.
24
:
PR
U-
IC
SS
1
Pi
n
Ac
ce
ss

SI
GN
AL
NA
M
E

DE
SC
RI
PT
IO
N

T
Y
P
E

P
R
O
C

HE
AD
ER
_P
IN

M
O
D
E

HE
AD
ER
_P
IN

M
O
D
E

pr
1_
pr
u0
_g
po
0

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
H
6

NA
pr
1_
pr
u0
_g
po
1

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
H
3

NA
pr
1_
pr
u0
_g
po
2

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
H
5

NA
pr
1_
pr
u0
_g
po
3

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
G
6

P
8_
12

M
O
D
E
1
3

pr
1_
pr
u0
_g
po
4

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
H
4

P
8_
11

M
O
D
E
1
3

pr
1_
pr
u0
_g
po
5

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
G
4

P
9_
15

M
O
D
E
1
3

pr
1_
pr
u0
_g
po
6

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
G
2

NA
pr
1_
pr
u0
_g
po
7

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
G
3

NA
pr
1_
pr
u0
_g
po
8

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
G
5

NA
pr
1_
pr
u0
_g
po
9

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
F
2

NA
pr
1_
pr
u0
_g
po
10

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
F
6

NA
pr
1_
pr
u0
_g
po
11

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
F
3

NA
pr
1_
pr
u0
_g
po
12

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
F
4

NA
pr
1_
pr
u0
_g
po
13

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
F
1

NA
pr
1_
pr
u0
_g
po
14

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
E
3

NA
pr
1_
pr
u0
_g
po
15

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
E
5

NA
pr
1_
pr
u0
_g
po
16

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
E
1

NA
pr
1_
pr
u0
_g
po
17

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
E
2

P
9_
26

M
O
D
E
1
3

pr
1_
pr
u0
_g
po
18

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
E
6

NA
pr
1_
pr
u0
_g
po
19

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
D
2

NA
pr
1_
pr
u0
_g
po
20

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
D
3

NA
pr
1_
pr
u0
_g
pi
0

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
H
6

NA
pr
1_
pr
u0
_g
pi
1

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
H
3

NA
pr
1_
pr
u0
_g
pi
2

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
H
5

NA
pr
1_
pr
u0
_g
pi
3

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
G
6

P
8_
12

M
O
D
E
1
2

pr
1_
pr
u0
_g
pi
4

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
H
4

P
8_
11

M
O
D
E
1
2

pr
1_
pr
u0
_g
pi
5

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
G
4

P
9_
15

M
O
D
E
1
2

pr
1_
pr
u0
_g
pi
6

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
G
2

NA
pr
1_
pr
u0
_g
pi
7

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
G
3

NA
pr
1_
pr
u0
_g
pi
8

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
G
5

NA
pr
1_
pr
u0
_g
pi
9

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
F
2

NA
pr
1_
pr
u0
_g
pi
10

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
F
6

NA
pr
1_
pr
u0
_g
pi
11

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
F
3

NA
pr
1_
pr
u0
_g
pi
12

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
F
4

NA
pr
1_
pr
u0
_g
pi
13

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
F
1

NA
co
nt
inu
es
on
ne
xt
pa
ge

146 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
ble

2.
24
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
RI
PT
IO
N

T
Y
P
E

P
R
O
C

HE
AD
ER
_P
IN

M
O
D
E

HE
AD
ER
_P
IN

M
O
D
E

pr
1_
pr
u0
_g
pi
14

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
E
3

NA
pr
1_
pr
u0
_g
pi
15

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
E
5

NA
pr
1_
pr
u0
_g
pi
16

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
E
1

NA
pr
1_
pr
u0
_g
pi
17

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
E
2

P
9_
26

M
O
D
E
1
2

pr
1_
pr
u0
_g
pi
18

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
E
6

NA
pr
1_
pr
u0
_g
pi
19

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
D
2

NA
pr
1_
pr
u0
_g
pi
20

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
D
3

NA
pr
1_
pr
u1
_g
po
0

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E
2

NA
pr
1_
pr
u1
_g
po
1

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
2

P
9_
20

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
2

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F
4

P
9_
19

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
3

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C
1

P
9_
41

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
4

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E
4

NA
pr
1_
pr
u1
_g
po
5

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F
5

P
8_
18

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
6

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E
6

P
8_
19

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
7

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
3

P
8_
13

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
8

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F
6

NA
pr
1_
pr
u1
_g
po
9

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
5

P
8_
14

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
10

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C
2

P
9_
42

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
11

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C
3

P
9_
27

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
12

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C
4

NA
pr
1_
pr
u1
_g
po
13

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B
2

NA
pr
1_
pr
u1
_g
po
14

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
6

P
9_
14

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
15

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C
5

P
9_
16

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
16

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
3

P
8_
15

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
17

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B
3

P
8_
26

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
18

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B
4

P
8_
16

M
O
D
E
1
3

pr
1_
pr
u1
_g
po
19

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B
5

NA
pr
1_
pr
u1
_g
po
20

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
4

NA
pr
1_
pr
u1
_g
pi
0

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
E
2

NA
pr
1_
pr
u1
_g
pi
1

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
2

P
9_
20

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
2

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
F
4

P
9_
19

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
3

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
C
1

P
9_
41

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
4

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
E
4

NA
pr
1_
pr
u1
_g
pi
5

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
F
5

P
8_
18

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
6

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
E
6

P
8_
19

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
7

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
3

P
8_
13

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
8

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
F
6

NA
co
nt
inu
es
on
ne
xt
pa
ge

2.4. BeagleBone AI 147

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
ble

2.
24
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
RI
PT
IO
N

T
Y
P
E

P
R
O
C

HE
AD
ER
_P
IN

M
O
D
E

HE
AD
ER
_P
IN

M
O
D
E

pr
1_
pr
u1
_g
pi
9

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
5

P
8_
14

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
10

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
C
2

P
9_
42

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
11

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
C
3

P
9_
27

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
12

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
C
4

NA
pr
1_
pr
u1
_g
pi
13

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
B
2

NA
pr
1_
pr
u1
_g
pi
14

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
6

P
9_
14

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
15

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
C
5

P
9_
16

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
16

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
3

P
8_
15

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
17

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
B
3

P
8_
26

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
18

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
B
4

P
8_
16

M
O
D
E
1
2

pr
1_
pr
u1
_g
pi
19

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
B
5

NA
pr
1_
pr
u1
_g
pi
20

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
4

NA
pr
1_
m
ii_
m
t0
_c
lk

M
II0
Tr
an
sm
it
Cl
oc
k

I
U
5

NA
pr
1_
m
ii0
_t
xe
n

M
II0
Tr
an
sm
it
En
ab
le

O
V
3

NA
pr
1_
m
ii0
_t
xd
3

M
II0
Tr
an
sm
it
D
at
a

O
V
5

NA
pr
1_
m
ii0
_t
xd
2

M
II0
Tr
an
sm
it
D
at
a

O
V
4

NA
pr
1_
m
ii0
_t
xd
1

M
II0
Tr
an
sm
it
D
at
a

O
Y
2

NA
pr
1_
m
ii0
_t
xd
0

M
II0
Tr
an
sm
it
D
at
a

O
W
2

NA
pr
1_
m
ii0
_r
xd
v

M
II0
D
at
a
Va
lid

I
V
2

NA
pr
1_
m
ii_
m
r0
_c
lk

M
II0
Re
ce
iv
e
Cl
oc
k

I
Y
1

NA
pr
1_
m
ii0
_r
xd
3

M
II0
Re
ce
iv
e
D
at
a

I
W
9

NA
pr
1_
m
ii0
_r
xd
2

M
II0
Re
ce
iv
e
D
at
a

I
V
9

NA
pr
1_
m
ii0
_c
rs

M
II0
Ca
rr
ie
rS
en
se

I
V
7

NA
pr
1_
m
ii0
_r
xe
r

M
II0
Re
ce
iv
e
Er
ro
r

I
U
7

NA
pr
1_
m
ii0
_r
xd
1

M
II0
Re
ce
iv
e
D
at
a

I
V
6

NA
pr
1_
m
ii0
_r
xd
0

M
II0
Re
ce
iv
e
D
at
a

I
U
6

NA
pr
1_
m
ii0
_c
ol

M
II0
Co
lli
si
on
D
et
ec
t

I
V
1

NA
pr
1_
m
ii0
_r
xl
in
k

M
II0
Re
ce
iv
e
Li
nk

I
U
4

NA
pr
1_
m
ii_
m
t1
_c
lk

M
II1
Tr
an
sm
it
Cl
oc
k

I
C
1

P
9_
41

M
O
D
E
1
1

pr
1_
m
ii1
_t
xe
n

M
II1
Tr
an
sm
it
En
ab
le

O
E
4

NA
pr
1_
m
ii1
_t
xd
3

M
II1
Tr
an
sm
it
D
at
a

O
F
5

P
8_
18

M
O
D
E
1
1

pr
1_
m
ii1
_t
xd
2

M
II1
Tr
an
sm
it
D
at
a

O
E
6

P
8_
19

M
O
D
E
1
1

pr
1_
m
ii1
_t
xd
1

M
II1
Tr
an
sm
it
D
at
a

O
D
5

P
8_
14

M
O
D
E
1
1

pr
1_
m
ii1
_t
xd
0

M
II1
Tr
an
sm
it
D
at
a

O
C
2

P
9_
42

M
O
D
E
1
1

pr
1_
m
ii_
m
r1
_c
lk

M
II1
Re
ce
iv
e
Cl
oc
k

I
C
3

P
9_
27

M
O
D
E
1
1

pr
1_
m
ii1
_r
xd
v

M
II1
D
at
a
Va
lid

I
C
4

NA
pr
1_
m
ii1
_r
xd
3

M
II1
Re
ce
iv
e
D
at
a

I
B
2

NA
co
nt
inu
es
on
ne
xt
pa
ge

148 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
ble

2.
24
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
RI
PT
IO
N

T
Y
P
E

P
R
O
C

HE
AD
ER
_P
IN

M
O
D
E

HE
AD
ER
_P
IN

M
O
D
E

pr
1_
m
ii1
_r
xd
2

M
II1
Re
ce
iv
e
D
at
a

I
D
6

P
9_
14

M
O
D
E
1
1

pr
1_
m
ii1
_r
xd
1

M
II1
Re
ce
iv
e
D
at
a

I
C
5

P
9_
16

M
O
D
E
1
1

pr
1_
m
ii1
_r
xd
0

M
II1
Re
ce
iv
e
D
at
a

I
A
3

P
8_
15

M
O
D
E
1
1

pr
1_
m
ii1
_r
xe
r

M
II1
Re
ce
iv
e
Er
ro
r

I
B
3

P
8_
26

M
O
D
E
1
1

pr
1_
m
ii1
_r
xl
in
k

M
II1
Re
ce
iv
e
Li
nk

I
B
4

P
8_
16

M
O
D
E
1
1

pr
1_
m
ii1
_c
ol

M
II1
Co
lli
si
on
D
et
ec
t

I
B
5

NA
pr
1_
m
ii1
_c
rs

M
II1
Ca
rr
ie
rS
en
se

I
A
4

NA
pr
1_
m
di
o_
m
dc
lk

M
D
IO
Cl
oc
k

O
D
3

P
8_
13

M
O
D
E
1
1

pr
1_
m
di
o_
da
ta

M
D
IO
D
at
a

IO
F
6

NA
pr
1_
ed
c_
la
tc
h0
_i
n

La
tc
h
In
pu
t0

I
A
G
3
/E
2

NA
pr
1_
ed
c_
la
tc
h1
_i
n

La
tc
h
In
pu
t1

I
A
G
5

NA
pr
1_
ed
c_
sy
nc
0_
ou
t

SY
NC
0
O
ut
pu
t

O
A
F
2
/D

2
P
9_
20

M
O
D
E
1
1

pr
1_
ed
c_
sy
nc
1_
ou
t

SY
NC
1
O
ut
pu
t

O
A
F
6

NA
pr
1_
ed
io
_l
at
ch
_i
n

La
tc
h
In
pu
t

I
A
F
3

NA
pr
1_
ed
io
_s
of

St
ar
tO
fF
ra
m
e

O
A
F
4
/F
4

P
9_
19

M
O
D
E
1
1

pr
1_
ed
io
_d
at
a_
in
0

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
F
1
/E
1

NA
pr
1_
ed
io
_d
at
a_
in
1

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
E
3
/G

2
NA

pr
1_
ed
io
_d
at
a_
in
2

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
E
5
/H

7
NA

pr
1_
ed
io
_d
at
a_
in
3

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
E
1
/G

1
NA

pr
1_
ed
io
_d
at
a_
in
4

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
E
2
/G

6
P
9_
26

M
O
D
E
1
0

P
8_
34

M
O
D
E
1
2

pr
1_
ed
io
_d
at
a_
in
5

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
E
6
/F
2

P
8_
36

M
O
D
E
1
2

pr
1_
ed
io
_d
at
a_
in
6

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
D
2
/F
3

NA
pr
1_
ed
io
_d
at
a_
in
7

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A
D
3
/D

1
P
8_
15

M
O
D
E
1
2

p
r1
_e
di
o_
da
ta
_o
ut
0

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
F
1
/E
1

NA
p
r1
_e
di
o_
da
ta
_o
ut
1

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
E
3
/G

2
NA

p
r1
_e
di
o_
da
ta
_o
ut
2

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
E
5
/H

7
NA

p
r1
_e
di
o_
da
ta
_o
ut
3

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
E
1
/G

1
NA

p
r1
_e
di
o_
da
ta
_o
ut
4

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
E
2
/G

6
P
9_
26

M
O
D
E
1
1

P
8_
34

M
O
D
E
1
3

p
r1
_e
di
o_
da
ta
_o
ut
5

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
E
6
/F
2

P
8_
36

M
O
D
E
1
3

p
r1
_e
di
o_
da
ta
_o
ut
6

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
D
2
/F
3

NA
p
r1
_e
di
o_
da
ta
_o
ut
7

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A
D
3
/D

1
P
8_
15

M
O
D
E
1
3

pr
1_
ua
rt
0_
ct
s_
n

UA
RT
Cl
ea
r-T
o-
Se
nd

I
G
1
/F
1
1

P
8_
45

M
O
D
E
1
0

pr
1_
ua
rt
0_
rt
s_
n

UA
RT
Re
ad
y-
To
-S
en
d

O
G
6
/G

1
0

P
8_
34

M
O
D
E
1
1

P
8_
46

M
O
D
E
1
0

pr
1_
ua
rt
0_
rx
d

UA
RT
Re
ce
iv
e
D
at
a

I
F
2
/F
1
0

P
8_
36

M
O
D
E
1
1

P
8_
43

M
O
D
E
1
0

pr
1_
ua
rt
0_
tx
d

UA
RT
Tr
an
sm
it
D
at
a

O
F
3
/G

1
1

P
8_
44

M
O
D
E
1
0

pr
1_
ec
ap

0_
ec
ap
_c
ap
in
_a
pw
m
_o

Ca
pt
ur
e
In
pu
t/P
W
M
O
ut
pu
t

IO
D
1
/E
9

P
8_
15

M
O
D
E
1
1

P
8_
41

M
O
D
E
1
0

2.4. BeagleBone AI 149

BeagleBoard Docs, Release 1.0.20230308-wip

PRU-ICSS2 Pin Access The table below shows which PRU-ICSS2 signals can be accessed on BeagleBone®
AI and on which connector and pins they are accessible from. Some signals are accessible on the same pins.
Signal Names reveal which PRU-ICSS Subsystem is being addressed. pr1 is PRU-ICSS1 and pr2 is PRU-ICSS2

150 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
bl
e
2.
25
:
PR
U-
IC
SS
2
Pi
n
Ac
ce
ss

SI
GN
AL
NA
M
E

DE
SC
R
IP
TI
ON

TY
PE

PR
OC

HE
AD

ER
_P
IN

M
OD
E

HE
AD

ER
_P
IN

M
OD
E

p
r2
_p
ru
0_
gp
o0

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
G
11
/A
C5

P8
_4
4

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o1

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E9
/A
B4

P8
_4
1

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o2

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F9
/A
D
4

P8
_4
2

M
O
D
E1
3

P8
_2
1

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o3

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F8
/A
C4

P8
_3
9

M
O
D
E1
3

P8
_2
0

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o4

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E7
/A
C7

P8
_4
0

M
O
D
E1
3

P8
_2
5

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o5

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E8
/A
C6

P8
_3
7

M
O
D
E1
3

P8
_2
4

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o6

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
9/
AC
9

P8
_3
8

M
O
D
E1
3

P8
_5

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o7

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
7/
AC
3

P8
_3
6

M
O
D
E1
3

P8
_6

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o8

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
D
8/
AC
8

P8
_3
4

M
O
D
E1
3

P8
_2
3

M
O
D
E1
3

p
r2
_p
ru
0_
gp
o9

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A5
/A
D
6

P8
_3
5

M
O
D
E1
3

P8
_2
2

M
O
D
E1
3

pr
2_
pr
u0
_g
po
10

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C6
/A
B8

P8
_3
3

M
O
D
E1
3

P8
_3

M
O
D
E1
3

pr
2_
pr
u0
_g
po
11

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C8
/A
B5

P8
_3
1

M
O
D
E1
3

P8
_4

M
O
D
E1
3

pr
2_
pr
u0
_g
po
12

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C7
/B
18

P8
_3
2

M
O
D
E1
3

pr
2_
pr
u0
_g
po
13

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B7
/F
15

P8
_4
5

M
O
D
E1
3

pr
2_
pr
u0
_g
po
14

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B8
/B
19

P9
_1
1

M
O
D
E1
3

P9
_1
1

M
O
D
E1
3

pr
2_
pr
u0
_g
po
15

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A7
/C
17

P8
_1
7

M
O
D
E1
3

P9
_1
3

M
O
D
E1
3

pr
2_
pr
u0
_g
po
16

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A8
/C
15

P8
_2
7

M
O
D
E1
3

pr
2_
pr
u0
_g
po
17

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
C9
/A
16

P8
_2
8

M
O
D
E1
3

pr
2_
pr
u0
_g
po
18

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A9
/A
19

P8
_2
9

M
O
D
E1
3

pr
2_
pr
u0
_g
po
19

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
B9
/A
18

P8
_3
0

M
O
D
E1
3

pr
2_
pr
u0
_g
po
20

PR
U0

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
A
10
/F
14

P8
_4
6

M
O
D
E1
3

P8
_8

M
O
D
E1
3

p
r2
_p
ru
0_
gp
i0

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
G
11
/A
C5

P8
_4
4

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i1

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
E9
/A
B4

P8
_4
1

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i2

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
F9
/A
D
4

P8
_4
2

M
O
D
E1
2

P8
_2
1

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i3

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
F8
/A
C4

P8
_3
9

M
O
D
E1
2

P8
_2
0

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i4

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
E7
/A
C7

P8
_4
0

M
O
D
E1
2

P8
_2
5

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i5

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
E8
/A
C6

P8
_3
7

M
O
D
E1
2

P8
_2
4

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i6

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
9/
AC
9

P8
_3
8

M
O
D
E1
2

P8
_5

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i7

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
7/
AC
3

P8
_3
6

M
O
D
E1
2

P8
_6

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i8

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
D
8/
AC
8

P8
_3
4

M
O
D
E1
2

P8
_2
3

M
O
D
E1
2

p
r2
_p
ru
0_
gp
i9

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A5
/A
D
6

P8
_3
5

M
O
D
E1
2

P8
_2
2

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
10

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
C6
/A
B8

P8
_3
3

M
O
D
E1
2

P8
_3

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
11

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
C8
/A
B5

P8
_3
1

M
O
D
E1
2

P8
_4

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
12

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
C7
/B
18

P8
_3
2

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
13

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
B7
/F
15

P8
_4
5

M
O
D
E1
2

co
nt
inu
es
on
ne
xt
pa
ge

2.4. BeagleBone AI 151

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
ble

2.
25
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
R
IP
TI
ON

TY
PE

PR
OC

HE
AD

ER
_P
IN

M
OD
E

HE
AD

ER
_P
IN

M
OD
E

pr
2_
pr
u0
_g
pi
14

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
B8
/B
19

P9
_1
1

M
O
D
E1
2

P9
_1
1

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
15

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A7
/C
17

P8
_1
7

M
O
D
E1
2

P9
_1
3

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
16

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A8
/C
15

P8
_2
7

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
17

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
C9
/A
16

P8
_2
8

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
18

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A9
/A
19

P8
_2
9

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
19

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
B9
/A
18

P8
_3
0

M
O
D
E1
2

pr
2_
pr
u0
_g
pi
20

PR
U0

G
en
er
al
-P
ur
po
se
In
pu
t

I
A
10
/F
14

P8
_4
6

M
O
D
E1
2

P8
_8

M
O
D
E1
2

p
r2
_p
ru
1_
gp
o0

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V1
/D
17

P8
_3
2

M
O
D
E1
3

p
r2
_p
ru
1_
gp
o1

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
U4
/A
A3

NA
p
r2
_p
ru
1_
gp
o2

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
U3
/A
B9

NA
p
r2
_p
ru
1_
gp
o3

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V2
/A
B3

NA
p
r2
_p
ru
1_
gp
o4

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
Y1
/A
A4

NA
p
r2
_p
ru
1_
gp
o5

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
W
9/
D
18

P9
_2
5

M
O
D
E1
3

p
r2
_p
ru
1_
gp
o6

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V9
/E
17

P8
_9

M
O
D
E1
3

p
r2
_p
ru
1_
gp
o7

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V7
/C
14

P9
_3
1

M
O
D
E1
3

p
r2
_p
ru
1_
gp
o8

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
U7
/G
12

P9
_1
8

M
O
D
E1
3

p
r2
_p
ru
1_
gp
o9

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V6
/F
12

P9
_1
7

M
O
D
E1
3

pr
2_
pr
u1
_g
po
10

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
U6
/B
12

P9
_3
1

M
O
D
E1
3

pr
2_
pr
u1
_g
po
11

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
U5
/A
11

P9
_2
9

M
O
D
E1
3

pr
2_
pr
u1
_g
po
12

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V5
/B
13

P9
_3
0

M
O
D
E1
3

pr
2_
pr
u1
_g
po
13

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V4
/A
12

P9
_2
6

M
O
D
E1
3

pr
2_
pr
u1
_g
po
14

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
V3
/E
14

P9
_4
2

M
O
D
E1
3

pr
2_
pr
u1
_g
po
15

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
Y2
/A
13

P8
_1
0

M
O
D
E1
3

pr
2_
pr
u1
_g
po
16

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
W
2/
G
14

P8
_7

M
O
D
E1
3

pr
2_
pr
u1
_g
po
17

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
E1
1

P8
_2
7

M
O
D
E1
3

pr
2_
pr
u1
_g
po
18

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F1
1

P8
_4
5

M
O
D
E1
3

pr
2_
pr
u1
_g
po
19

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
G
10

P8
_4
6

M
O
D
E1
3

pr
2_
pr
u1
_g
po
20

PR
U1

G
en
er
al
-P
ur
po
se
O
ut
pu
t

O
F1
0

P8
_4
3

M
O
D
E1
3

p
r2
_p
ru
1_
gp
i0

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V1
/D
17

P8
_3
2

M
O
D
E1
2

p
r2
_p
ru
1_
gp
i1

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
U4
/A
A3

NA
p
r2
_p
ru
1_
gp
i2

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
U3
/A
B9

NA
p
r2
_p
ru
1_
gp
i3

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V2
/A
B3

NA
p
r2
_p
ru
1_
gp
i4

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
Y1
/A
A4

NA
p
r2
_p
ru
1_
gp
i5

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
W
9/
D
18

P9
_2
5

M
O
D
E1
2

p
r2
_p
ru
1_
gp
i6

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V9
/E
17

P8
_9

M
O
D
E1
2

p
r2
_p
ru
1_
gp
i7

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V7
/C
14

P9
_3
1

M
O
D
E1
2

p
r2
_p
ru
1_
gp
i8

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
U7
/G
12

P9
_1
8

M
O
D
E1
2

co
nt
inu
es
on
ne
xt
pa
ge

152 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
ble

2.
25
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
R
IP
TI
ON

TY
PE

PR
OC

HE
AD

ER
_P
IN

M
OD
E

HE
AD

ER
_P
IN

M
OD
E

p
r2
_p
ru
1_
gp
i9

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V6
/F
12

P9
_1
7

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
10

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
U6
/B
12

P9
_3
1

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
11

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
U5
/A
11

P9
_2
9

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
12

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V5
/B
13

P9
_3
0

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
13

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V4
/A
12

P9
_2
8

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
14

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
V3
/E
14

P9
_4
2

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
15

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
Y2
/A
13

P8
_1
0

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
16

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
W
2/
G
14

P8
_7

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
17

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
E1
1

P8
_2
7

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
18

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
F1
1

P8
_4
5

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
19

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
G
10

P8
_4
6

M
O
D
E1
2

pr
2_
pr
u1
_g
pi
20

PR
U1

G
en
er
al
-P
ur
po
se
In
pu
t

I
F1
0

P8
_4
3

M
O
D
E1
2

pr
2_
e
dc
_l
at
ch
0_
in

La
tc
h
In
pu
t0

I
F9

P8
_4
2

M
O
D
E1
0

pr
2_
e
dc
_l
at
ch
1_
in

La
tc
h
In
pu
t1

I
F8

P8
_3
9

M
O
D
E1
0

pr
2_
e
dc
_s
yn
c0
_o
ut

SY
NC
0
O
ut
pu
t

O
E7

P8
_4
0

M
O
D
E1
0

pr
2_
e
dc
_s
yn
c1
_o
ut

SY
NC
1
O
ut
pu
t

O
E8

P8
_3
7

M
O
D
E1
0

pr
2_
e
di
o_
la
tc
h_
in

La
tc
h
In
pu
t

I
D
9

P8
_3
8

M
O
D
E1
0

pr
2_
ed
io
_s
of

St
ar
tO
fF
ra
m
e

O
D
7

P8
_3
6

M
O
D
E1
0

pr
2
_u
ar
t0
_c
ts
_n

UA
RT
C
le
ar
-T
o-
Se
nd

I
D
8

P8
_3
4

M
O
D
E1
0

pr
2
_u
ar
t0
_r
ts
_n

UA
RT
R
ea
dy
-T
o-
Se
nd

O
A5

P8
_3
5

M
O
D
E1
0

p
r2
_u
ar
t0
_r
xd

UA
RT
R
ec
ei
ve
D
at
a

I
C6

P8
_3
3

M
O
D
E1
0

p
r2
_u
ar
t0
_t
xd

UA
RT
Tr
an
sm
it
D
at
a

O
C8

P8
_3
1

M
O
D
E1
0

pr
2
_e
ca
p0
_e
ca
p_

ca
pi
n_
ap
w
m
_o

C
ap
tu
re
In
p
ut
/P
W
M
ou
tp
ut

IO
C7

P8
_3
2

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n0

Et
he
rn
et
D
ig
ita
lI
np
ut

I
B7

P8
_4
5

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n1

Et
he
rn
et
D
ig
ita
lI
np
ut

I
B8

P9
_1
1

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n2

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A7

P8
_1
7

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n3

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A8

P8
_2
7

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n4

Et
he
rn
et
D
ig
ita
lI
np
ut

I
C9

P8
_2
8

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n5

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A9

P8
_2
9

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n6

Et
he
rn
et
D
ig
ita
lI
np
ut

I
B9

P8
_3
0

M
O
D
E1
0

pr
2_
e
di
o_
da
ta
_i
n7

Et
he
rn
et
D
ig
ita
lI
np
ut

I
A1
0

P8
_4
6

M
O
D
E1
0

pr
2_
ed
io
_d
at
a_
ou
t0

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
B7

P8
_4
5

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t1

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
B8

P9
_1
1

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t2

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A7

P8
_1
7

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t3

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A8

P8
_2
7

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t4

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
C9

P8
_2
8

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t5

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A9

P8
_2
9

M
O
D
E1
1

co
nt
inu
es
on
ne
xt
pa
ge

2.4. BeagleBone AI 153

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
ble

2.
25
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

SI
GN
AL
NA
M
E

DE
SC
R
IP
TI
ON

TY
PE

PR
OC

HE
AD

ER
_P
IN

M
OD
E

HE
AD

ER
_P
IN

M
OD
E

pr
2_
ed
io
_d
at
a_
ou
t6

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
B9

P8
_3
0

M
O
D
E1
1

pr
2_
ed
io
_d
at
a_
ou
t7

Et
he
rn
et
D
ig
ita
lO
ut
pu
t

O
A1
0

P8
_4
6

M
O
D
E1
1

pr
2_
m
ii
1_
co
l

M
II1
Co
ll
is
io
n
D
et
ec
t

I
D
18

P9
_2
5

M
O
D
E1
1

pr
2_
m
ii
1_
cr
s

M
II1
C
ar
rie
rS
en
se

I
E1
7

P8
_9

M
O
D
E1
1

pr
2_
m
di
o
_m
dc
lk

M
D
IO
Cl
oc
k

O
C
14
/A
B3

P9
_3
1

M
O
D
E1
1

p
r2
_m
di
o_
da
ta

M
D
IO
D
at
a

IO
D
14
/A
A4

P9
_2
9

M
O
D
E1
1

p
r2
_m
ii
0_
rx
er

M
II0
R
ec
ei
ve
Er
ro
r

I
G
12

P9
_1
8

M
O
D
E1
1

pr
2
_m
ii_
m
t0
_c
lk

M
II0
Tr
an
sm
it
Cl
oc
k

I
F1
2

P9
_1
7

M
O
D
E1
1

p
r2
_m
ii
0_
tx
en

M
II0
Tr
an
sm
it
En
ab
le

O
B1
2

P9
_3
1

M
O
D
E1
1

p
r2
_m
ii
0_
tx
d3

M
II0
Tr
an
sm
it
D
at
a

O
A1
1

P9
_2
9

M
O
D
E1
1

p
r2
_m
ii
0_
tx
d2

M
II0
Tr
an
sm
it
D
at
a

O
B1
3

P9
_3
0

M
O
D
E1
1

p
r2
_m
ii
0_
tx
d1

M
II0
Tr
an
sm
it
D
at
a

O
A1
2

P9
_2
8

M
O
D
E1
1

p
r2
_m
ii
0_
tx
d0

M
II0
Tr
an
sm
it
D
at
a

O
E1
4

P9
_4
2

M
O
D
E1
1

pr
2
_m
ii_
m
r0
_c
lk

M
II0
R
ec
ei
ve
Cl
oc
k

I
A1
3

P8
_1
0

M
O
D
E1
1

p
r2
_m
ii
0_
rx
dv

M
II0
D
at
a
Va
lid

I
G
14

P8
_7

M
O
D
E1
1

p
r2
_m
ii
0_
rx
d3

M
II0
R
ec
ei
ve
D
at
a

I
F1
4

P8
_8

M
O
D
E1
1

p
r2
_m
ii
0_
rx
d2

M
II0
R
ec
ei
ve
D
at
a

I
A1
9

NA
p
r2
_m
ii
0_
rx
d1

M
II0
R
ec
ei
ve
D
at
a

I
A1
8

NA
p
r2
_m
ii
0_
rx
d0

M
II0
R
ec
ei
ve
D
at
a

I
C1
5

NA
pr
2
_m
ii0
_
rx
lin
k

M
II0
R
ec
ei
ve
Li
nk

I
A1
6

NA
pr
2_
m
ii
0_
cr
s

M
II0
C
ar
rie
rS
en
se

I
B1
8

NA
pr
2_
m
ii
0_
co
l

M
II0
Co
ll
is
io
n
D
et
ec
t

I
F1
5

NA
p
r2
_m
ii
1_
rx
er

M
II1
R
ec
ei
ve
Er
ro
r

I
B1
9

P9
_1
1

M
O
D
E1
1

pr
2
_m
ii1
_
rx
lin
k

M
II1
R
ec
ei
ve
Li
nk

I
C1
7

P9
_1
3

M
O
D
E1
1

pr
2
_m
ii_
m
t1
_c
lk

M
II1
Tr
an
sm
it
Cl
oc
k

I
AC
5

NA
p
r2
_m
ii
1_
tx
en

M
II1
Tr
an
sm
it
En
ab
le

O
AB
4

NA
p
r2
_m
ii
1_
tx
d3

M
II1
Tr
an
sm
it
D
at
a

O
AD
4

P8
_2
1

M
O
D
E1
1

p
r2
_m
ii
1_
tx
d2

M
II1
Tr
an
sm
it
D
at
a

O
AC
4

P8
_2
0

M
O
D
E1
1

p
r2
_m
ii
1_
tx
d1

M
II1
Tr
an
sm
it
D
at
a

O
AC
7

P8
_2
5

M
O
D
E1
1

p
r2
_m
ii
1_
tx
d0

M
II1
Tr
an
sm
it
D
at
a

O
AC
6

P8
_2
4

M
O
D
E1
1

pr
2
_m
ii_
m
r1
_c
lk

M
II1
R
ec
ei
ve
Cl
oc
k

I
AC
9

P8
_5

M
O
D
E1
1

p
r2
_m
ii
1_
rx
dv

M
II1
D
at
a
Va
lid

I
AC
3

P8
_6

M
O
D
E1
1

p
r2
_m
ii
1_
rx
d3

M
II1
R
ec
ei
ve
D
at
a

I
AC
8

P8
_2
3

M
O
D
E1
1

p
r2
_m
ii
1_
rx
d2

M
II1
R
ec
ei
ve
D
at
a

I
AD
6

P8
_2
2

M
O
D
E1
1

p
r2
_m
ii
1_
rx
d1

M
II1
R
ec
ei
ve
D
at
a

I
AB
8

P8
_3

M
O
D
E1
1

p
r2
_m
ii
1_
rx
d0

M
II1
R
ec
ei
ve
D
at
a

I
AB
5

P8
_4

M
O
D
E1
1

en
d

en
d

en
d

en
d

en
d

en
d

en
d

en
d

154 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

User LEDs

There are 5 User Programmable LEDs on BeagleBone® AI. These are connected to GPIO pins on the processor.

The table shows the signals used to control the LEDs from the processor. Each LED is user programmable.
However, there is a Default Functions assigned in the device tree for BeagleBone® AI:

LED GPIO SIGNAL DEFAULT FUNCTION
D2 GPIO3_17 Heartbeat When Linux is Running
D3 GPIO5_5 microSD Activity
D4 GPIO3_15 CPU Activity
D5 GPIO3_14 eMMC Activity
D8 GPIO3_7 WiFi/Bluetooth Activity

2.4.7 Connectors

2.4. BeagleBone AI 155

BeagleBoard Docs, Release 1.0.20230308-wip

Expansion Connectors

The expansion interface on the board is comprised of two 46 pin connectors, the P8 and P9 Headers. All signals
on the expansion headers are 3.3V unless otherwise indicated.

Note: Do not connect 5V logic level signals to these pins or the board will be damaged.

Note: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Figure ? shows the location of the expansion connectors.

156 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

The location and spacing of the expansion headers are the same as on BeagleBone Black.

Connector P8 The following tables show the pinout of the P8 expansion header. The SW is responsible for
setting the default function of each pin. Refer to the processor documentation for more information on these
pins and detailed descriptions of all of the pins listed. In some cases there may not be enough signals to
complete a group of signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.

The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

If included, the 2nd BALL row is the pin number on the processor for a second processor pin connected to the
same pin on the expansion header. Similarly, all row headings starting with 2nd refer to data for this second
processor pin.

Note: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT
WILL DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Table 2.26: P8.01-P8.02
P8.01 P8.02
GND GND

Table 2.27: P8.03-P8.05
P8.03 P8.04 P8.05

GPIO 24 25 193
BALL AB8 AB5 AC9
REG 0x179C 0x17A0 0x178C
MODE 0 mmc3_dat6 mmc3_dat7 mmc3_dat2
1 spi4_d0 spi4_cs0 spi3_cs0
2 uart10_ctsn uart10_rtsn uart5_ctsn
3
4 vin2b_de1 vin2b_clk1 vin2b_d3
5
6
7
8
9 vin5a_hsync0 vin5a_vsync0 vin5a_d3
10 ehrpwm3_tripzone_input eCAP3_in_PWM3_out eQEP3_index
11 pr2_mii1_rxd1 pr2_mii1_rxd0 pr2_mii_mr1_clk
12 pr2_pru0_gpi10 pr2_pru0_gpi11 pr2_pru0_gpi6
13 pr2_pru0_gpo10 pr2_pru0_gpo11 pr2_pru0_gpo6
14 gpio1_24 gpio1_25 gpio7_1
15 Driver off Driver off Driver off

2.4. BeagleBone AI 157

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.28: P8.06-P8.09
P8.06 P8.07 P8.08 P8.09

GPIO 194 165 166 178
BALL AC3 G14 F14 E17
REG 0x1790 0x16EC 0x16F0 0x1698
MODE0 mmc3_dat3 mcasp1_axr14 mcasp1_axr15 xref_clk1
1 spi3_cs1 mcasp7_aclkx mcasp7_fsx mcasp2_axr9
2 uart5_rtsn mcasp7_aclkr mcasp7_fsr mcasp1_axr5
3 mcasp2_ahclkx
4 vin2b_d2 mcasp6_ahclkx
5
6
7 vin6a_d9 vin6a_d8 vin6a_clk0
8
9 vin5a_d2
10 eQEP3_strobe timer11 timer12 timer14
11 pr2_mii1_rxdv pr2_mii0_rxdv pr2_mii0_rxd3 pr2_mii1_crs
12 pr2_pru0_gpi7 pr2_pru1_gpi16 pr2_pru0_gpi20 pr2_pru1_gpi6
13 pr2_pru0_gpo7 pr2_pru1_gpo16 pr2_pru0_gpo20 pr2_pru1_gpo6
14 gpio7_2 gpio6_5 gpio6_6 gpio6_18
15 Driver off Driver off Driver off Driver off

Table 2.29: P8.10-P8.13
P8.10 P8.11 P8.12 P8.13

GPIO 164 75 74 107
BALL A13 AH4 AG6 D3
REG 0x16E8 0x1510 0x150C 0x1590
MODE 0 mcasp1_axr13 vin1a_d7 vin1a_d6 vin2a_d10
1 mcasp7_axr1
2
3 vout3_d0 vout3_d1 mdio_mclk
4 vout3_d16 vout3_d17 vout2_d13
5
6
7 vin6a_d10
8
9 kbd_col7
10 timer10 eQEP2B_in eQEP2A_in ehrpwm2B
11 pr2_mii_mr0_clk pr1_mdio_mdclk
12 pr2_pru1_gpi15 pr1_pru0_gpi4 pr1_pru0_gpi3 pr1_pru1_gpi7
13 pr2_pru1_gpo15 pr1_pru0_gpo4 pr1_pru0_gpo3 pr1_pru1_gpo7
14 gpio6_4 gpio3_11 gpio3_10 gpio4_11
15 Driver off Driver off Driver off Driver off

Table 2.30: P8.14-P8.16
P8.14 P8.15 P8.16

GPIO 109 99 125
BALL D5 D1 B4
REG 0x1598 0x1570 0x15BC
MODE 0 vin2a_d12 vin2a_d2 vin2a_d21
1
2 vin2b_d2
3 rgmii1_txc rgmii1_rxd2
4 vout2_d11 vout2_d21 vout2_d2
5 emu12 vin3a_fld0
6 vin3a_d13
7
8 mii1_rxclk uart10_rxd mii1_col
9 kbd_col8 kbd_row6
10 eCAP2_in_PWM2_out eCAP1_in_PWM1_out

continues on next page

158 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.30 – continued from previous page
P8.14 P8.15 P8.16

11 pr1_mii1_txd1 pr1_ecap0_ecap_capin_apwm_o pr1_mii1_rxlink
12 pr1_pru1_gpi9 pr1_edio_data_in7 pr1_pru1_gpi18
13 pr1_pru1_gpo9 pr1_edio_data_out7 pr1_pru1_gpo18
14 gpio4_13 gpio4_3 gpio4_29
15 Driver off Driver off Driver off
2nd BALL A3
2nd REG 0x15B4
2nd MODE 0 vin2a_d19
2nd 1
2nd 2 vin2b_d4
2nd 3 rgmii1_rxctl
2nd 4 vout2_d4
2nd 5
2nd 6 vin3a_d11
2nd 7
2nd 8 mii1_txer
2nd 9
2nd 10 ehrpwm3_tripzone_input
2nd 11 pr1_mii1_rxd0
2nd 12 pr1_pru1_gpi16
2nd 13 pr1_pru1_gpo16
2nd 14 gpio4_27
2nd 15 Driver off

Table 2.31: P8.17-P8.19
P8.17 P8.18 P8.19

GPIO 242 105 106
BALL A7 F5 E6
REG 0x1624 0x1588 0x158C
MODE 0 vout1_d18 vin2a_d8 vin2a_d9
1
2 emu4
3 vin4a_d2
4 vin3a_d2 vout2_d15 vout2_d14
5 obs11 emu18 emu19
6 obs27
7
8 mii1_rxd3 mii1_rxd0
9 kbd_col5 kbd_col6
10 pr2_edio_data_in2 eQEP2_strobe ehrpwm2A
11 pr2_edio_data_out2 pr1_mii1_txd3 pr1_mii1_txd2
12 pr2_pru0_gpi15 pr1_pru1_gpi5 pr1_pru1_gpi6
13 pr2_pru0_gpo15 pr1_pru1_gpo5 pr1_pru1_gpo6
14 gpio8_18 gpio4_9 gpio4_10
15 Driver off Driver off Driver off

2.4. BeagleBone AI 159

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.32: P8.20-P8.22
P8.20 P8.21 P8.22

GPIO 190 189 23
BALL AC4 AD4 AD6
REG 0x1780 0x177C 0x1798
MODE 0 mmc3_cmd mmc3_clk mmc3_dat5
1 spi3_sclk spi4_d1
2 uart10_txd
3
4 vin2b_d6 vin2b_d7 vin2b_d0
5
6
7
8
9 vin5a_d6 vin5a_d7 vin5a_d0
10 eCAP2_in_PWM2_out ehrpwm2_tripzone_input ehrpwm3B
11 pr2_mii1_txd2 pr2_mii1_txd3 pr2_mii1_rxd2
12 pr2_pru0_gpi3 pr2_pru0_gpi2 pr2_pru0_gpi9
13 pr2_pru0_gpo3 pr2_pru0_gpo2 pr2_pru0_gpo9
14 gpio6_30 gpio6_29 gpio1_23
15 Driver off Driver off Driver off

Table 2.33: P8.23-P8.26
P8.23 P8.24 P8.25 P8.26

GPIO 22 192 191 124
BALL AC8 AC6 AC7 B3
REG 0x1794 0x1788 0x1784 0x15B8
MODE 0 mmc3_dat4 mmc3_dat1 mmc3_dat0 vin2a_d20
1 spi4_sclk spi3_d0 spi3_d1
2 uart10_rxd uart5_txd uart5_rxd vin2b_d3
3 rgmii1_rxd3
4 vin2b_d1 vin2b_d4 vin2b_d5 vout2_d3
5 vin3a_de0
6 vin3a_d12
7
8 mii1_rxer
9 vin5a_d1 vin5a_d4 vin5a_d5
10 ehrpwm3A eQEP3B_in eQEP3A_in eCAP3_in_PWM3_out
11 pr2_mii1_rxd3 pr2_mii1_txd0 pr2_mii1_txd1 pr1_mii1_rxer
12 pr2_pru0_gpi8 pr2_pru0_gpi5 pr2_pru0_gpi4 pr1_pru1_gpi17
13 pr2_pru0_gpo8 pr2_pru0_gpo5 pr2_pru0_gpo4 pr1_pru1_gpo17
14 gpio1_22 gpio7_0 gpio6_31 gpio4_28
15 Driver off Driver off Driver off Driver off

Table 2.34: P8.27-P8.29
P8.27 P8.28 P8.29

GPIO 119 115 118
BALL E11 D11 C11
REG 0x15D8 0x15C8 0x15D4
MODE 0 vout1_vsync vout1_clk vout1_hsync
1
2
3 vin4a_vsync0 vin4a_fld0 vin4a_hsync0
4 vin3a_vsync0 vin3a_fld0 vin3a_hsync0
5
6
7
8 spi3_sclk spi3_cs0 spi3_d0
9
10

continues on next page

160 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.34 – continued from previous page
P8.27 P8.28 P8.29

11
12 pr2_pru1_gpi17
13 pr2_pru1_gpo17
14 gpio4_23 gpio4_19 gpio4_22
15 Driver off Driver off Driver off
2nd BALL A8 C9 A9
2nd REG 0x1628 0x162C 0x1630
2nd MODE0 vout1_d19 vout1_d20 vout1_d21
2nd 1
2nd 2 emu15 emu16 emu17
2nd 3 vin4a_d3 vin4a_d4 vin4a_d5
2nd 4 vin3a_d3 vin3a_d4 vin3a_d5
2nd 5 obs12 obs13 obs14
2nd 6 obs28 obs29 obs30
2nd 7
2nd 8
2nd 9
2nd 10 pr2_edio_data_in3 pr2_edio_data_in4 pr2_edio_data_in5
2nd 11 pr2_edio_data_out3 pr2_edio_data_out4 pr2_edio_data_out5
2nd 12 pr2_pru0_gpi16 pr2_pru0_gpi17 pr2_pru0_gpi18
2nd 13 pr2_pru0_gpo16 pr2_pru0_gpo17 pr2_pru0_gpo18
2nd 14 gpio8_19 gpio8_20 gpio8_21
2nd 15 Driver off Driver off Driver off

Table 2.35: P8.30-P8.32
P8.30 P8.31 P8.32

GPIO 116 238 239
BALL B10 C8 C7
REG 0x15CC 0x1614 0x1618
MODE 0 vout1_de vout1_d14 vout1_d15
1
2 emu13 emu14
3 vin4a_de0 vin4a_d14 vin4a_d15
4 vin3a_de0 vin3a_d14 vin3a_d15
5 obs9 obs10
6 obs25 obs26
7
8 spi3_d1
9
10 pr2_uart0_txd pr2_ecap0_ecap_capin_apwm_o
11
12 pr2_pru0_gpi11 pr2_pru0_gpi12
13 pr2_pru0_gpo11 pr2_pru0_gpo12
14 gpio4_20 gpio8_14 gpio8_15
15 Driver off Driver off Driver off
2nd BALL B9 G16 D17
2nd REG 0x1634 0x173C 0x1740
2nd MODE 0 vout1_d22 mcasp4_axr0 mcasp4_axr1
2nd 1
2nd 2 emu18 spi3_d0 spi3_cs0
2nd 3 vin4a_d6 uart8_ctsn uart8_rtsn
2nd 4 vin3a_d6 uart4_rxd uart4_txd

continues on next page

2.4. BeagleBone AI 161

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.35 – continued from previous page
P8.30 P8.31 P8.32

2nd 5 obs15
2nd 6 obs31 vout2_d18 vout2_d19
2nd 7
2nd 8 vin4a_d18 vin4a_d19
2nd 9 vin5a_d13 vin5a_d12
2nd 10 pr2_edio_data_in6
2nd 11 pr2_edio_data_out6
2nd 12 pr2_pru0_gpi19 pr2_pru1_gpi0
2nd 13 pr2_pru0_gpo19 pr2_pru1_gpo0
2nd 14 gpio8_22
2nd 15 Driver off Driver off Driver off

Table 2.36: P8.33-P8.35
P8.33 P8.34 P8.35

GPIO 237 235 236
BALL C6 D8 A5
REG 0x1610 0x1608 0x160C
MODE 0 vout1_d13 vout1_d11 vout1_d12
1
2 emu12 emu10 emu11
3 vin4a_d13 vin4a_d11 vin4a_d12
4 vin3a_d13 vin3a_d11 vin3a_d12
5 obs8 obs6 obs7
6 obs24 obs22 obs23
7 obs_dmarq2
8
9
10 pr2_uart0_rxd pr2_uart0_cts_n pr2_uart0_rts_n
11
12 pr2_pru0_gpi10 pr2_pru0_gpi8 pr2_pru0_gpi9
13 pr2_pru0_gpo10 pr2_pru0_gpo8 pr2_pru0_gpo9
14 gpio8_13 gpio8_11 gpio8_12
15 Driver off Driver off Driver off
2nd BALL AF9 G6 AD9
2nd REG 0x14E8 0x1564 0x14E4
2nd MODE0 vin1a_fld0 vin2a_vsync0 vin1a_de0
2nd 1 vin1b_vsync1 vin1b_hsync1
2nd 2
2nd 3 vin2b_vsync1 vout3_d17
2nd 4 vout3_clk vout2_vsync vout3_de
2nd 5 uart7_txd emu9 uart7_rxd
2nd 6
2nd 7 timer15 uart9_txd timer16
2nd 8 spi3_d1 spi4_d1 spi3_sclk
2nd 9 kbd_row1 kbd_row3 kbd_row0
2nd 10 eQEP1B_in ehrpwm1A eQEP1A_in
2nd 11 pr1_uart0_rts_n
2nd 12 pr1_edio_data_in4
2nd 13 pr1_edio_data_out4
2nd 14 gpio3_1 gpio4_0 gpio3_0
2nd 15 Driver off Driver off Driver off

162 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.37: P8.36-P8.38
P8.36 P8.37 P8.38

GPIO 234 232 233
BALL D7 E8 D9
REG 0x1604 0x15FC 0x1600
MODE 0 vout1_d10 vout1_d8 vout1_d9
1
2 emu3 uart6_rxd uart6_txd
3 vin4a_d10 vin4a_d8 vin4a_d9
4 vin3a_d10 vin3a_d8 vin3a_d9
5 obs5
6 obs21
7 obs_irq2
8
9
10 pr2_edio_sof pr2_edc_sync1_out pr2_edio_latch_in
11
12 pr2_pru0_gpi7 pr2_pru0_gpi5 pr2_pru0_gpi6
13 pr2_pru0_gpo7 pr2_pru0_gpo5 pr2_pru0_gpo6
14 gpio8_10 gpio8_8 gpio8_9
15 Driver off Driver off Driver off
2nd BALL F2 A21 C18
2nd REG 0x1568 0x1738 0x1734
2nd MODE 0 vin2a_d0 mcasp4_fsx mcasp4_aclkx
2nd 1 mcasp4_fsr mcasp4_aclkr
2nd 2 spi3_d1 spi3_sclk
2nd 3 uart8_txd uart8_rxd
2nd 4 vout2_d23 i2c4_scl i2c4_sda
2nd 5 emu10
2nd 6 vout2_d17 vout2_d16
2nd 7 uart9_ctsn
2nd 8 spi4_d0 vin4a_d17 vin4a_d16
2nd 9 kbd_row4 vin5a_d14 vin5a_d15
2nd 10 ehrpwm1B
2nd 11 pr1_uart0_rxd
2nd 12 pr1_edio_data_in5
2nd 13 pr1_edio_data_out5
2nd 14 gpio4_1
2nd 15 Driver off Driver off Driver off

2.4. BeagleBone AI 163

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.38: P8.39-P8.41
P8.39 P8.40 P8.41

GPIO 230 231 228
BALL F8 E7 E9
REG 0x15F4 0x15F8 0x15EC
MODE 0 vout1_d6 vout1_d7 vout1_d4
1
2 emu8 emu9 emu6
3 vin4a_d22 vin4a_d23 vin4a_d20
4 vin3a_d22 vin3a_d23 vin3a_d20
5 obs4 obs2
6 obs20 obs18
7
8
9
10 pr2_edc_latch1_in pr2_edc_sync0_out pr1_ecap0_ecap_capin_apwm_o
11
12 pr2_pru0_gpi3 pr2_pru0_gpi4 pr2_pru0_gpi1
13 pr2_pru0_gpo3 pr2_pru0_gpo4 pr2_pru0_gpo1
14 gpio8_6 gpio8_7 gpio8_4
15 Driver off Driver off Driver off

Table 2.39: P8.42-P8.44
P8.42 P8.43 P8.44

GPIO 229 226 227
BALL F9 F10 G11
REG 0x15F0 0x15E4 0x15E8
MODE 0 vout1_d5 vout1_d2 vout1_d3
1
2 emu7 emu2 emu5
3 vin4a_d21 vin4a_d18 vin4a_d19
4 vin3a_d21 vin3a_d18 vin3a_d19
5 obs3 obs0 obs1
6 obs19 obs16 obs17
7 obs_irq1 obs_dmarq1
8
9
10 pr2_edc_latch0_in pr1_uart0_rxd pr1_uart0_txd
11
12 pr2_pru0_gpi2 pr2_pru1_gpi20 pr2_pru0_gpi0
13 pr2_pru0_gpo2 pr2_pru1_gpo20 pr2_pru0_gpo0
14 gpio8_5 gpio8_2 gpio8_3
15 Driver off Driver off Driver off

Table 2.40: P8.45-P8.46
P8.45 P8.46

GPIO 224 225
BALL F11 G10
REG 0x15DC 0x15E0
MODE 0 vout1_d0 vout1_d1
1
2 uart5_rxd uart5_txd
3 vin4a_d16 vin4a_d17
4 vin3a_d16 vin3a_d17
5
6
7
8 spi3_cs2
9
10 pr1_uart0_cts_n pr1_uart0_rts_n

continues on next page

164 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.40 – continued from previous page
P8.45 P8.46

11
12 pr2_pru1_gpi18 pr2_pru1_gpi19
13 pr2_pru1_gpo18 pr2_pru1_gpo19
14 gpio8_0 gpio8_1
15 Driver off Driver off
2nd BALL B7 A10
2nd REG 0x161C 0x1638
2nd MODE 0 vout1_d16 vout1_d23
2nd 1
2nd 2 uart7_rxd emu19
2nd 3 vin4a_d0 vin4a_d7
2nd 4 vin3a_d0 vin3a_d7
2nd 5
2nd 6
2nd 7
2nd 8 spi3_cs3
2nd 9
2nd 10 pr2_edio_data_in0 pr2_edio_data_in7
2nd 11 pr2_edio_data_out0 pr2_edio_data_out7
2nd 12 pr2_pru0_gpi13 pr2_pru0_gpi20
2nd 13 pr2_pru0_gpo13 pr2_pru0_gpo20
2nd 14 gpio8_16 gpio8_23
2nd 15 Driver off Driver off

TODO: Notes regarding the resistors on muxed pins.

Connector P9 The following tables show the pinout of the P9 expansion header. The SW is responsible for
setting the default function of each pin. Refer to the processor documentation for more information on these
pins and detailed descriptions of all of the pins listed. In some cases there may not be enough signals to
complete a group of signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.

The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

If included, the 2nd BALL row is the pin number on the processor for a second processor pin connected to the
same pin on the expansion header. Similarly, all row headings starting with 2nd refer to data for this second
processor pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

In the table are the following notations:

PWR_BUT is a 5V level as pulled up internally by the TPS6590379. It is activated by pulling the signal to GND.

TODO: (Actually, on BeagleBone AI, I believe PWR_BUT is pulled to 3.3V, but activation is still done by pulling
the signal to GND. Also, a quick grounding of PWR_BUT will trigger a system event where shutdown can occur,

2.4. BeagleBone AI 165

BeagleBoard Docs, Release 1.0.20230308-wip

but there is no hardware power-off function like on BeagleBone Black via this signal. It does, however, act as
a hardware power-on.)

TODO: (On BeagleBone Black, SYS_RESET was a bi-directional signal, but it is only an output from BeagleBone
AI to capes on BeagleBone AI.)

Table 2.41: P9.11-P9.13
P9.11 P9.12 P9.13

GPIO 241 128 172
BALL B19 B14 C17
REG 0x172C 0x16AC 0x1730
MODE 0 mcasp3_axr0 mcasp1_aclkr mcasp3_axr1
1 mcasp7_axr2
2 mcasp2_axr14 mcasp2_axr15
3 uart7_ctsn uart7_rtsn
4 uart5_rxd uart5_txd
5
6 vout2_d0
7 vin6a_d1 vin6a_d0
8 vin4a_d0
9 vin5a_fld0
10 i2c4_sda
11 pr2_mii1_rxer pr2_mii1_rxlink
12 pr2_pru0_gpi14 pr2_pru0_gpi15
13 pr2_pru0_gpo14 pr2_pru0_gpo15
14 gpio5_0
15 Driver off Driver off Driver off
2nd BALL B8 AB10**
2nd REG 0x1620 0x1680
2nd MODE 0 vout1_d17 usb1_drvvbus
2nd 1
2nd 2 uart7_txd
2nd 3 vin4a_d1
2nd 4 vin3a_d1
2nd 5
2nd 6
2nd 7 timer16
2nd 8
2nd 9
2nd 10 pr2_edio_data_in1
2nd 11 pr2_edio_data_out1
2nd 12 pr2_pru0_gpi14
2nd 13 pr2_pru0_gpo14
2nd 14 gpio8_17 gpio6_12
2nd 15 Driver off Driver off

166 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.42: P9.14-P9.16
P9.14 P9.15 P9.16

GPIO 121 76 122
BALL D6 AG4 C5
REG 0x15AC 0x1514 0x15B0
MODE 0 vin2a_d17 vin1a_d8 vin2a_d18
1 vin1b_d7
2 vin2b_d6 vin2b_d5
3 rgmii1_txd0 rgmii1_rxc
4 vout2_d6 vout3_d15 vout2_d5
5
6 vin3a_d9 vin3a_d10
7
8 mii1_txd2 mii1_txd3
9 kbd_row2
10 ehrpwm3A eQEP2_index ehrpwm3B
11 pr1_mii1_rxd2 pr1_mii1_rxd1
12 pr1_pru1_gpi14 pr1_pru0_gpi5 pr1_pru1_gpi15
13 pr1_pru1_gpo14 pr1_pru0_gpo5 pr1_pru1_gpo15
14 gpio4_25 gpio3_12 gpio4_26
15 Driver off Driver off Driver off

Table 2.43: P9.17-P9.19
P9.17 P9.18 P9.19

GPIO 209 208 195
BALL B24 G17 R6
REG 0x17CC 0x17C8 0x1440
MODE 0 spi2_cs0 spi2_d0 gpmc_a0
1 uart3_rtsn uart3_ctsn
2 uart5_txd uart5_rxd vin3a_d16
3 vout3_d16
4 vin4a_d0
5
6 vin4b_d0
7 i2c4_scl
8 uart5_rxd
9
10
11
12
13
14 gpio7_17 gpio7_16 gpio7_3
15 Driver off Driver off Driver off
2nd BALL F12 G12 F4
2nd REG 0x16B8 0x16B4 0x157C
2nd MODE 0 mcasp1_axr1 mcasp1_axr0 vin2a_d5
2nd 1
2nd 2
2nd 3 uart6_txd uart6_rxd
2nd 4 vout2_d18
2nd 5 emu15
2nd 6
2nd 7 vin6a_hsync0 vin6a_vsync0
2nd 8 uart10_rtsn
2nd 9 kbd_col2
2nd 10 i2c5_scl i2c5_sda eQEP2A_in
2nd 11 pr2_mii_mt0_clk pr2_mii0_rxer pr1_edio_sof

continues on next page

2.4. BeagleBone AI 167

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.43 – continued from previous page
P9.17 P9.18 P9.19

2nd 12 pr2_pru1_gpi9 pr2_pru1_gpi8 pr1_pru1_gpi2
2nd 13 pr2_pru1_gpo9 pr2_pru1_gpo8 pr1_pru1_gpo2
2nd 14 gpio5_3 gpio5_2 gpio4_6
2nd 15 Driver off Driver off Driver off

Table 2.44: P9.20-P9.22
P9.20 P9.21 P9.22

GPIO 196 67 179
BALL T9 AF8 B26
REG 0x1444 0x14F0 0x169C
MODE 0 gpmc_a1 vin1a_vsync0 xref_clk2
1 vin1b_de1 mcasp2_axr10
2 vin3a_d17 mcasp1_axr6
3 vout3_d17 mcasp3_ahclkx
4 vin4a_d1 vout3_vsync mcasp7_ahclkx
5 uart7_rtsn
6 vin4b_d1 vout2_clk
7 i2c4_sda timer13
8 uart5_txd spi3_cs0 vin4a_clk0
9
10 eQEP1_strobe timer15
11
12
13
14 gpio7_4 gpio3_3 gpio6_19
15 Driver off Driver off Driver off
2nd BALL D2 B22 A26
2nd REG 0x1578 0x17C4 0x17C0
2nd MODE 0 vin2a_d4 spi2_d1 spi2_sclk
2nd 1 uart3_txd uart3_rxd
2nd 2
2nd 3
2nd 4 vout2_d19
2nd 5 emu14
2nd 6
2nd 7
2nd 8 uart10_ctsn
2nd 9 kbd_col1
2nd 10 ehrpwm1_synco
2nd 11 pr1_edc_sync0_out
2nd 12 pr1_pru1_gpi1
2nd 13 pr1_pru1_gpo1
2nd 14 gpio4_5 gpio7_15 gpio7_14
2nd 15 Driver off Driver off Driver off

168 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.45: P9.23-P9.25
P9.23 P9.24 P9.25

GPIO 203 175 177
BALL A22 F20 D18
REG 0x17B4 0x168C 0x1694
MODE 0 spi1_cs1 gpio6_15 xref_clk0
1 mcasp1_axr9 mcasp2_axr8
2 sata1_led dcan2_rx mcasp1_axr4
3 spi2_cs1 uart10_txd mcasp1_ahclkx
4 mcasp5_ahclkx
5
6 vout2_vsync
7 vin6a_d0
8 vin4a_vsync0 hdq0
9 i2c3_scl clkout2
10 timer2 timer13
11 pr2_mii1_col
12 pr2_pru1_gpi5
13 pr2_pru1_gpo5
14 gpio7_11 gpio6_15 gpio6_17
15 Driver off Driver off Driver off

Table 2.46: P9.26-P9.29
P9.26 P9.27 P9.28 P9.29

GPIO 174 111 113 139
BALL E21 C3 A12 A11
REG 0x1688 0x15A0 0x16E0 0x16D8
MODE 0 gpio6_14 vin2a_d14 mcasp1_axr11 mcasp1_axr9
1 mcasp1_axr8 mcasp6_fsx mcasp6_axr1
2 dcan2_tx mcasp6_fsr
3 uart10_rxd rgmii1_txd3 spi3_cs0 spi3_d1
4 vout2_d9
5
6 vout2_hsync
7 vin6a_d12 vin6a_d14
8 vin4a_hsync0 mii1_txclk
9 i2c3_sda
10 timer1 eQEP3B_in timer8 timer6
11 pr1_mii_mr1_clk pr2_mii0_txd1 pr2_mii0_txd3
12 pr1_pru1_gpi11 pr2_pru1_gpi13 pr2_pru1_gpi11
13 pr1_pru1_gpo11 pr2_pru1_gpo13 pr2_pru1_gpo11
14 gpio6_14 gpio4_15 gpio4_17 gpio5_11
15 Driver off Driver off Driver off Driver off
2nd BALL AE2 J14 D14
2nd REG 0x1544 0x16B0 0x16A8
2nd MODE 0 vin1a_d20 mcasp1_fsr mcasp1_fsx
2nd 1 vin1b_d3 mcasp7_axr3
2nd 2
2nd 3
2nd 4 vout3_d3
2nd 5
2nd 6 vin3a_d4 vout2_d1
2nd 7 vin6a_de0
2nd 8 vin4a_d1
2nd 9 kbd_col5
2nd 10 pr1_edio_data_in4 i2c4_scl i2c3_scl
2nd 11 pr1_edio_data_out4 pr2_mdio_data

continues on next page

2.4. BeagleBone AI 169

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.46 – continued from previous page
P9.26 P9.27 P9.28 P9.29

2nd 12 pr1_pru0_gpi17
2nd 13 pr1_pru0_gpo17
2nd 14 gpio3_24 gpio5_1 gpio7_30
2nd 15 Driver off Driver off Driveroff

Table 2.47: P9.30-P9.31
P9.30 P9.31

GPIO 140 138
BALL B13 B12
REG 0x16DC 0x16D4
MODE 0 mcasp1_axr10 mcasp1_axr8
1 mcasp6_aclkx mcasp6_axr0
2 mcasp6_aclkr
3 spi3_d0 spi3_sclk
4
5
6
7 vin6a_d13 vin6a_d15
8
9
10 timer7 timer5
11 pr2_mii0_txd2 pr2_mii0_txen
12 pr2_pru1_gpi12 pr2_pru1_gpi10
13 pr2_pru1_gpo12 pr2_pru1_gpo10
14 gpio5_12 gpio5_10
15 Driver off Driver off
2nd BALL C14
2nd REG 0x16A4
2nd MODE 0 mcasp1_aclkx
2nd 1
2nd 2
2nd 3
2nd 4
2nd 5
2nd 6
2nd 7 vin6a_fld0
2nd 8
2nd 9
2nd 10 i2c3_sda
2nd 11 pr2_mdio_mdclk
2nd 12 pr2_pru1_gpi7
2nd 13 pr2_pru1_gpo7
2nd 14 gpio7_31
2nd 15 Driver off

Table 2.48: P9.41-P9.42
P9.41 P9.42

GPIO 180 114
BALL C23 E14
REG 0x16A0 0x16E4
MODE 0 xref_clk3 mcasp1_axr12

continues on next page

170 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.48 – continued from previous page
P9.41 P9.42

1 mcasp2_axr11 mcasp7_axr0
2 mcasp1_axr7
3 mcasp4_ahclkx spi3_cs1
4 mcasp8_ahclkx
5
6 vout2_de
7 hdq0 vin6a_d11
8 vin4a_de0
9 clkout3
10 timer16 timer9
11 pr2_mii0_txd0
12 pr2_pru1_gpi14
13 pr2_pru1_gpo14
14 gpio6_20 gpio4_18
15 Driver off Driver off
2nd BALL C1 C2
2nd REG 0x1580 0x159C
2nd MODE 0 vin2a_d6 vin2a_d13
2nd 1
2nd 2
2nd 3 rgmii1_txctl
2nd 4 vout2_d17 vout2_d10
2nd 5 emu16
2nd 6
2nd 7
2nd 8 mii1_rxd1 mii1_rxdv
2nd 9 kbd_col3 kbd_row8
2nd 10 eQEP2B_in eQEP3A_in
2nd 11 pr1_mii_mt1_clk pr1_mii1_txd0
2nd 12 pr1_pru1_gpi3 pr1_pru1_gpi10
2nd 13 pr1_pru1_gpo3 pr1_pru1_gpo10
2nd 14 gpio4_7 gpio4_14
2nd 15 Driver off Driver off

TODO

Serial Debug

TODO

USB 3 Type-C

TODO

USB 2 Type-A

TODO

Gigabit Ethernet

TODO

2.4. BeagleBone AI 171

BeagleBoard Docs, Release 1.0.20230308-wip

Coaxial

TODO

microSD Memory

TODO

microHDMI

TODO

2.4.8 Cape Board Support

There is a Cape Headers Google Spreadsheet which has a lot of detail regarding various boards and cape add-on
boards.

See also https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec

TODO

BeagleBone® Black Cape Compatibility

TODO

See https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec for now.

EEPROM

TODO

Pin Usage Consideration

TODO

GPIO

TODO

I2C

TODO

UART or PRU UART

This section is about both UART pins on the header and PRU UART pins on the headers we will include a chart
and later some code

172 Chapter 2. Boards

https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec
https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.49: UART
Function Pin ABC Ball Pinctrl Register Mode
uart3_txd P9.21 B22 0x17C4 1
uart3_rxd P9.22 A26 0x17C0 1
uart5_txd P9.13 C17 0x1730 4
uart5_rxd P9.11 B19 0x172C 4
uart5_ctsn P8.05 AC9 0x178C 2
uart5_rtsn P8.06 AC3 0x1790 2
uart8_txd P8.37 A21 0x1738 3
uart8_rxd P8.38 C18 0x1734 3
uart8_ctsn P8.31 G16 0x173C 3
uart8_rtsn P8.32 D17 0x1740 3
uart10_txd P9.24 F20 0x168C 3
uart10_rxd P9.26 E21 0x1688 3
uart10_ctsn P8.03 AB8 0x179C 2
uart10_rtsn P8.04 AB5 0x17A0 2
uart10_txd P9.24 F20 0x168C 3
uart10_rxd P9.26 E21 0x1688 3
uart10_ctsn P9.20 D2 0x1578 8
uart10_rtsn P9.19 F4 0x157C 8

Table 2.50: PRU UART
Function Pin ABC Ball Pinctrl Register Mode
pr2_uart0_txd P8.31 C8 0x1614 10
pr2_uart0_rxd P8.33 C6 0x1610 10
pr2_uart0_cts_n P8.34 D8 0x1608 10
pr2_uart0_rts_n P8.35 A5 0x160C 10
pr1_uart0_rxd P8.43 F10 0x15E4 10
pr1_uart0_txd P8.44 G11 0x15E8 10
pr1_uart0_cts_n P8.45 F11 0x15DC 10
pr1_uart0_rts_n P8.46 G10 0x15E0 10

TODO

SPI

TODO

Analog

TODO

PWM, TIMER, eCAP or PRU PWM/eCAP

TODO

eQEP

TODO

CAN

TODO

McASP (audio serial like I2S and AC97)

TODO

2.4. BeagleBone AI 173

BeagleBoard Docs, Release 1.0.20230308-wip

MMC

TODO

LCD

TODO

PRU GPIO

TODO

CLKOUT

TODO

Expansion Connector Headers

TODO: discuss header options for working with the expansion connectors per https://git.beagleboard.org/
beagleboard/beaglebone-black/-/wikis/System-Reference-Manual#section-7-1

Signal Usage

TODO

Cape Power

TODO

Mechanical

TODO

2.4.9 Mechanical Information

• Board Dimensions: 8.9cm x 5.4cm x 1.5cm

• Board Net Weight 48g

• Packaging Dimensions: 13.8cm x 10cm x 4cm

• Gross Weight (including packaging): 110g

• 3D STEP model: https://git.beagleboard.org/beagleboard/beaglebone-ai/-/tree/master/Mechanical

174 Chapter 2. Boards

https://git.beagleboard.org/beagleboard/beaglebone-black/-/wikis/System-Reference-Manual#section-7-1
https://git.beagleboard.org/beagleboard/beaglebone-black/-/wikis/System-Reference-Manual#section-7-1
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/tree/master/Mechanical

BeagleBoard Docs, Release 1.0.20230308-wip

2.4.10 Pictures

BeagleBone AI Back of Board Image

2.4. BeagleBone AI 175

BeagleBoard Docs, Release 1.0.20230308-wip

2.4.11 Support Information

TODO: Reference https://docs.beagleboard.org/latest/intro/support/index.html and https://beagleboard.org/
resources

Related TI documentation: http://www.ti.com/tool/BEAGLE-3P-BBONE-AI

2.4.12 Terms and Conditions

REGULATORY, COMPLIANCE, AND EXPORT INFORMATION

• Country of origin: PRC

• FCC: 2ATUT-BBONE-AI

• CE: TBD

• CNHTS: 8543909000

• USHTS: 8473301180

• MXHTS: 84733001

• TARIC: 8473302000

• ECCN: 5A992.C

• CCATS: Z1613110/G180570

• RoHS/REACH: TBD

• Volatility: TBD

176 Chapter 2. Boards

https://docs.beagleboard.org/latest/intro/support/index.html
https://beagleboard.org/resources
https://beagleboard.org/resources
http://www.ti.com/tool/BEAGLE-3P-BBONE-AI
https://git.beagleboard.org/beagleboard/beaglebone-ai/-/tree/master/regulatory/Validation_Z1613110.pdf

BeagleBoard Docs, Release 1.0.20230308-wip

BeagleBone AI is annotated to comply with Part 15 of the FCC Rules. Operation is subject to the following
two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any
interference received, including interference that may cause undesired operation. Changes or modifications
not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.

This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly
approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou
les modifications pas expressément approuvés par la partie responsible de la conformité ont pu vider l’autorité
de l’utilisateur pour actionner l’équipement.

WARRANTY AND DISCLAIMERS

The design materials referred to in this document are *NOT SUPPORTED* and DO NOT constitute a reference
design. Support of the open source developer community is provided through the resources defined at https:
//docs.beagleboard.org/latest/intro/support/index.html.

THERE IS NO WARRANTY FOR THE DESIGN MATERIALS, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
DESIGN MATERIALS “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE DESIGN MATERIALS IS WITH YOU.
SHOULD THE DESIGN MATERIALS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

This board was designed as an evaluation and development tool. It was not designed with any other application
in mind. As such, the design materials that are provided which include schematic, BOM, and PCB files, may
or may not be suitable for any other purposes. If used, the design material becomes your responsibility as
to whether or not it meets your specific needs or your specific applications and may require changes to meet
your requirements.

Additional terms BeagleBoard.org Foundation and logo-licensed manufacturers (together, henceforth iden-
tified as “Supplier”) provide BeagleBone AI under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user
indemnifies Supplier from all claims arising from the handling or use of the goods.

Should BeagleBone AI not meet the specifications indicated in the System Reference Manual, BeagleBone
AI may be returned within 90 days from the date of delivery to the distributor of purchase for a full refund.
THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN
LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET
FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES.

Please read the System Reference Manual and, specifically, the Warnings and Restrictions notice in the Sys-
tems Reference Manual prior to handling the product. This notice contains important safety information about
temperatures and voltages.

No license is granted under any patent right or other intellectual property right of Supplier covering or relating
to any machine, process, or combination in which such Supplier products or services might be or are used.
The Supplier currently deals with a variety of customers for products, and therefore our arrangement with the
user is not exclusive. The Supplier assume no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.

2.4. BeagleBone AI 177

https://docs.beagleboard.org/latest/intro/support/index.html
https://docs.beagleboard.org/latest/intro/support/index.html

BeagleBoard Docs, Release 1.0.20230308-wip

Warnings and Restrictions

For Feasibility Evaluation Only, in Laboratory/Development Environments BeagleBone AI is not a
complete product. It is intended solely for use for preliminary feasibility evaluation in laboratory/development
environments by technically qualified electronics experts who are familiar with the dangers and application
risks associated with handling electrical mechanical components, systems and subsystems. It should not be
used as all or part of a finished end product.

Your Sole Responsibility and Risk You acknowledge, represent, and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but
not limited to Food and Drug Administration regulations, if applicable) which relate to your products
and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of
BeagleBone AI for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all
such laws and other applicable regulatory requirements, and also to assure the safety of any activities to
be conducted by you and/or your employees, affiliates, contractors or designees, using BeagleBone AI.
Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between Bea-
gleBone AI and any human body are designed with suitable isolation and means to safely limit accessible
leakage currents to minimize the risk of electrical shock hazard.

3. Since BeagleBone AI is not a completed product, it may not meet all applicable regulatory and safety
compliance standards which may normally be associated with similar items. You assume full responsi-
bility to determine and/or assure compliance with any such standards and related certifications as may
be applicable. You will employ reasonable safeguards to ensure that your use of BeagleBone AI will not
result in any property damage, injury or death, even if BeagleBone AI should fail to perform as described
or expected.

Certain Instructions It is important to operate BeagleBone AI within Supplier’s recommended specifications
and environmental considerations per the user guidelines. Exceeding the specified BeagleBone AI ratings (in-
cluding but not limited to input and output voltage, current, power, and environmental ranges) may cause
property damage, personal injury or death. If there are questions concerning these ratings please contact
the Supplier representative prior to connecting interface electronics including input power and intended loads.
Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation
and/or possible permanent damage to BeagleBone AI and/or interface electronics. Please consult the Sys-
tem Reference Manual prior to connecting any load to BeagleBone AI output. If there is uncertainty as to the
load specification, please contact the Supplier representative. During normal operation, some circuit compo-
nents may have case temperatures greater than 60 C as long as the input and output are maintained at a
normal ambient operating temperature. These components include but are not limited to linear regulators,
switching transistors, pass transistors, and current sense resistors which can be identified using BeagleBone
AI’s schematic located at the link in BeagleBone AI’s System Reference Manual. When placing measurement
probes near these devices during normal operation, please be aware that these devices may be very warm to
the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic mea-
surement and diagnostics normally found in development environments should use BeagleBone AI.

Agreement to Defend, Indemnify and Hold Harmless You agree to defend, indemnify and hold Supplier,
its licensors and their representatives harmless from and against any and all claims, damages, losses, ex-
penses, costs and liabilities (collectively, “Claims”) arising out of or in connection with any use of BeagleBone
AI that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise
under law of tort or contract or any other legal theory, and even if BeagleBone AI fails to perform as described
or expected.

Safety-Critical or Life-Critical Applications If you intend to evaluate the components for possible use in
safety critical applications (such as life support) where a failure of the Supplier’s product would reasonably
be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III

178 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

or similar classification, then you must specifically notify Supplier of such intent and enter into a separate
Assurance and Indemnity Agreement.

2.5 BeagleBone AI-64

BeagleBone® AI-64 brings a complete system for developing artificial intelligence (AI) and machine learning
solutions with the convenience and expandability of the BeagleBone® platform and the peripherals on board
to get started right away learning and building applications. With locally hosted, ready-to-use, open-source fo-
cused tool chains and development environment, a simple web browser, power source and network connection
are all that need to be added to start building performance-optimized embedded applications. Industry-leading
expansion possibilities are enabled through familiar BeagleBone® cape headers, with hundreds of open-source
hardware examples and dozens of readily available embedded expansion options available off-the-shelf.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

2.5.1 Introduction

This document is the System Reference Manual for BeagleBone AI-64 and covers its use and design. The board
will primarily be referred to in the remainder of this document simply as the board, although it may also be
referred to as AI-64 or BeagleBone AI-64 as a reminder.

This design is subject to change without notice as we will work to keep improving the design as the product
matures based on feedback and experience. Software updates will be frequent and will be independent of the
hardware revisions and as such not result in a change in the revision number.

Make sure you frequently check the BeagleBone AI-64 git repository for the most up to date support documents.

2.5.2 Change History

This section describes the change history of this document and board. Document changes are not always a
result of a board change. A board change will always result in a document change.

Document Change History

This table seeks to keep track of major revision cycles in the documentation. Moving forward, we’ll seek to
align these version numbers across all of the various documentation.

Table 2.51: Table 1: Change History
Rev Changes Date By
0.0.1 AI-64 initial prototype September 2021 James Anderson
0.0.2 AI-64 final prototype December 2021 James Anderson
0.0.3 AI-64 initial production release June 9, 2022 Deepak Khatri and Jason Kridner

2.5. BeagleBone AI-64 179

http://creativecommons.org/licenses/by-sa/4.0/
https://git.beagleboard.org/beagleboard/beaglebone-ai-64/

BeagleBoard Docs, Release 1.0.20230308-wip

Board Changes

Be sure to check the board revision history in the schematic file in the BeagleBone AI-64 git repository . Also
check the issues list .

Rev B We are starting with revision B based on this being an update to the BeagleBone Black AI. However,
because this board ended up being so different, we’ve decided to name it BeagleBone AI-64, rather than simply
a new revision. This refers to the Seeed release on 21 Dec 2021 of “BeagleBone AI-64_SCH_Rev B_211221”.
This is the initial production release.

2.5.3 Connecting up your BeagleBone AI-64

This section provides instructions on how to hook up your board. This beagle requires a 5V > 3A power supply
to work properly via either USB Type-C power adapter or a barrel jack power adapter.

Recommended adapters:

• 5V @ 3A USB C power supply adapter for SBCs.

• 5V > 3A laptop/mobile adapter with USB-C cable.

All the Fig 3.1 BeagleBone AI-64 connections ports we will use in this chapter are shown in the figure below.

Fig. 2.82: Fig 3.1 BeagleBone AI-64 connections ports

Methods of operation

1. Tethered to a PC

2. Standalone development platform in a PC configuration using external peripherals

What’s In the Box

In the box you will find three main items as shown in Fig: BeagleBone AI-64 box content.

• BeagleBone AI-64.

• Instruction card.

A USB-C to USB-C cable is not included bot recommended for the tethered scenario and creates an out of box
experience where the board can be used immediately with no other equipment needed.

180 Chapter 2. Boards

https://git.beagleboard.org/beagleboard/beaglebone-ai-64
https://git.beagleboard.org/beagleboard/beaglebone-ai-64/-/issues
https://www.digikey.com/en/products/detail/raspberry-pi/RPI-USB-C-power-supply-White-US/10258760

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.83: Fig: BeagleBone AI-64 box content

Main Connection Scenarios

This section describes how to connect and power the board and serves as a slightly more detailed description
of the Quick Start Guide included in the box.

The board can be configured in several different ways, but we will discuss the two most common scenarios.

• Tethered to a PC via the USB cable

– Board is accessed as a storage drive and virtual Ethernet
connection.

• Standalone Desktop

– Display

– Keyboard and Mouse

– External 5V > 3A power supply

Each of these configurations is discussed in general terms in the following sections.

Tethered To A PC

In this configuration, the board is powered by the PC via a single USB cable. The board is accessed either as
a USB storage drive or via the browser on the connected PC. You need to use either Firefox or Chrome on the
PC, Internet Explorer will not work properly.

At least 5V @ 3A is required to power the board, In most cases the PC may not be able to supply sufficient
power for the board unless the connection is made over a Type-C to Type-C cable. You should always use an
external 5V > 3A DC power supply connected to the barrel jack if you are unsure that the system can provide
the required power or are otherwise using a USB-A to Type-C cable which will always require power from the
DC barrel jack.

Connect the Cable to the Board

1. Connect the type C USB cable to the board as shown in Fig: USB Connection to the Board. The connector
is on the top side of the board near barrel jack.

2. Connect the USB-A end of the cable to your PC or laptop USB port as shown in the usb-a-connect-figure
below.

3. The board will power on and the power LED will be on as shown in Fig: Board Power LED below.

2.5. BeagleBone AI-64 181

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.84: Fig: Tethered Configuration

Fig. 2.85: Fig: USB Connection to the Board

Fig. 2.86: Fig: USB Connection to the PC/Laptop

182 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.87: Fig: Board Power LED

4. When the board starts to the booting process started by the process of applying power, the LEDs will
come on in sequence as shown in boot-status-figure below. It will take a few seconds for the status LEDs
to come on, so be patient. The LEDs will be flashing in an erratic manner as it begins to boot the Linux
kernel.

Fig. 2.88: Fig: Board Boot Status

Accessing the Board as a Storage Drive The board will appear around a USB Storage drive on your PC
after thekernel has booted, which will take a round 10 seconds. The kernel on the board needs to boot before
the port gets enumerated. Once the board appears as a storage drive, do the following:

1. Open the USB Drive folder.

2. Click on the file named start.htm

3. The file will be opened by your browser on the PC and you should get a display showing the Quick Start
Guide.

4. Your board is now operational! Follow the instructions on your PC screen.

Standalone w/Display and Keyboard/Mouse

In this configuration, the board works more like a PC, totally free from any connection to a PC as shown in
desktop-config-figure. It allows you to create your code to make the board do whatever you need it to do. It
will however require certain common PC accessories. These accessories and instructions are described in the
following section.

2.5. BeagleBone AI-64 183

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.89: Fig: Desktop Configuration

Ethernet cable and M.2 WiFi + Bluetooth card are optional. They can be used if network access required.

Required Accessories In order to use the board in this configuration, you will need the following accessories:

• 5V > 3A power supply.

• Display Port or HDMI monitor.

• miniDP-DP or active miniDP-HDMI cable (or a recommended miniDP-DP or active miniDP-HDMI
adapter https://www.amazon.com/dp/B089GF8M87 has been tested and worked beautifully).

• USB wired/wireless keyboard and mouse.

• powered USB HUB (OPTIONAL). The board has only two USB Type-A host ports, so you may need to use
a powered USB Hub if you wish to add additional USB devices, such as a USB WiFi adapter.

• M.2 Bluetooth & WiFi module (OPTIONAL). For wireless connections, a USB WiFi adapter or a recom-
mended M.2 WiFi module can provide wireless networking.

Connecting Up the Board

1. Connect the miniDP to DP or active miniDP to HDMI cable from your BeagleBone AI-64 to your monitor.

Fig. 2.90: Fig: Connect miniDP-DP or active miniDP-HDMI cable to BeagleBone AI-64

2. If you have an Display Port or HDMI monitor with HDMI-HDMI or DP-DP cable you can use adapters as
shown in. Fig: Display adapters.

184 Chapter 2. Boards

https://www.amazon.com/dp/B089GF8M87

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.91: Fig: Display adapters

3. If you have wired/wireless USB keyboard and mouse such as

seen in FigKeyboard and Mouse below, you need to plug the receiver in the USB host port of the board
as shown in FigKeyboard and Mouse.

Fig. 2.92: FigKeyboard and Mouse

4. Connect the Ethernet Cable

If you decide you want to connect to your local area network, an Ethernet cable can be used. Connect the
Ethernet Cable to the Ethernet port as shown in Fig: Ethernet Cable Connection. Any standard 100M Ethernet
cable should work.

5. The final step is to plug in the DC power supply to the DC power jack as shown in barrel-jack-figure below.

6. The cable needed to connect to your display is a miniDP-DP or active miniDP-HDMI. Connect the miniDP
connector end to the board at this time. The connector is on the top side of the board as shown in
miniDP-figure below.

The connector is fairly robust, but we suggest that you not use the cable as a leash for your Beagle. Take
proper care not to put too much stress on the connector or cable.

7. Booting the Board

As soon as the power is applied to the board, it will start the booting up process. When the board starts to boot
the LEDs will come on. It will take a few seconds for the status LEDs to come on, so be patient. The LEDs will
be flashing in an erratic manner as it boots the Linux kernel.

While the four user LEDS can be over written and used as desired, they do have specific meanings in the image
that is shipped with the board once the Linux kernel has booted.

2.5. BeagleBone AI-64 185

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.93: Fig: Ethernet Cable Connection

Fig. 2.94: Fig: External DC Power

Fig. 2.95: Fig: Connect miniDP to DP or active miniDP to HDMI Cable to the Board

186 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.96: Fig: BeagleBone AI-64 LEDs

• USR0 is the heartbeat indicator from the Linux kernel.

• USR1 turns on when the microSD card is being accessed

• USR2 is an activity indicator. It turns on when the kernel is not in the idle loop.

• USR3 turns on when the onboard eMMC is being accessed.

• USR4 is an activity indicator for WiFi.

8. A Booted System

a. The board will have a mouse pointer appear on the screen as it enters the Linux boot step. You may
have to move the physical mouse to get the mouse pointer to appear. The system can come up in
the suspend mode with the monitor in a sleep mode.

b. After a minute or two a login screen will appear. You do not have to do anything at this point.

c. After a minute or two the desktop will appear. It should be similar to the one shown in Fig: Bea-
gleBone XFCE Desktop Screen. HOWEVER, it will change from one release to the next, so do not
expect your system to look exactly like the one in the figure, but it will be very similar.

d. And at this point you are ready to go! Fig: BeagleBone XFCE Desktop Screen shows the desktop
after booting.

Fig. 2.97: Fig: BeagleBone XFCE Desktop Screen

2.5. BeagleBone AI-64 187

BeagleBoard Docs, Release 1.0.20230308-wip

2.5.4 BeagleBone AI-64 Overview

BeagleBone AI-64 is the latest addition to BeagleBoard.org family and like its predecessors, is designed to
address the open-source Community, early adopters, and anyone interested in a low cost 64-bit Dual Arm®
Cortex®-A72 processor based Single Board Computer (SBC).

It has been equipped with a minimum set of features to allow the user to experience the power of the processor
and is not intended as a full development platform as many of the features and interfaces supplied by the
processor are not accessible from BeagleBone AI-64 via onboard support of some interfaces. It is not a complete
product designed to do any particular function. It is a foundation for experimentation and learning how to
program the processor and to access the peripherals by the creation of your own software and hardware.

It also offers access to many of the interfaces and allows for the use of add-on boards called capes, to add
many different combinations of features. A user may also develop their own board or add their own circuitry.

BeagleBone AI-64 is manufactured and warranted by partners listed at https://beagleboard.org/logo for the
benefit of the community and its supporters including the current BeagleBoard.org Foundation board members

• Jason Kridner, principal of JK Embedded Consulting an independent contractor and architect for new
Beagle designs.

• Drew Fustini, independent Linux developer

• Robert Nelson, applications engineer at Digi-Key

• Mark Yoder, professor at Rose-Hulman Institute of Technology

• Kathy Giori, product engineer at ZEDEDA

See bbb.io/about

BeagleBone AI-64 has been designed by Seeed Studio (Seeed Development Limited) under guidance from
BeagleBoard.org Foundation.

BeagleBone Compatibility

The board is intended to provide functionality well beyond BeagleBone Black or BeagleBone AI, while still
providing compatibility with BeagleBone Black’s expansion headers as much as possible. There are several
significant differences between the three designs.

Table 2.52: Table: BeagleBone Compatibility
Feature AI-64 AI Black
SoC TDA4VM AM5729 AM3358
Arm CPU Cortex-A72 (64-bit) Cortex-A15 (32-bit) Cortex-A8 (32-bit)
Arm cores/MHz 2x 2GHz 2x 1.5GHz 1x 1GHz
RAM 4GB 1GB 512MB
eMMC flash 16GB 16GB 4GB
Size 4” x 3.1” 3.4” x 2.1” .4” x 2.1”
Display miniDP + DSI microHDMI microHDMI
USB host (Type-A) 2x 5Gbps 1x 480Mbps 1x 480Mbps
USB dual-role Type-C 5Gbps Type-C 5Gbps mini-AB 480Mbps
Ethernet 10/100/1000M 10/100/1000M 10/100M
M.2 E-key - -
WiFi/ Bluetooth - AzureWave AW‑CM256SM -

Note: TODO: add cape compatibility details

BeagleBone AI-64 Features and Specification

This section covers the specifications and features of the board and provides a high level description of the
major components and interfaces that make up the board.

188 Chapter 2. Boards

https://beagleboard.org/logo
https://beagleboard.org/about

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.53: Table: BeagleBone AI-64 Features and Specification
Feature

Processor Texas Instruments TDA4VM
Graphics Engine PowerVR® Series8XE GE8430
SDRAM Memory LPDDR4 3.2GHz (4GB) Kingston Q3222PM1WDGTK-U
Onboard Flash eMMC (16GB) Kingston EMMC16G-TB29-PZ90
PMIC TPS65941213 and TPS65941111 PMICs regulator and one addi-

tional LDO.
Debug Support

2x 3 pin 3.3V TTL header
1. WKUP_UART0: Wake-up domain serial port
2. UART0: Main domain serial port

10-pin JTAG TAG-CONNECT footprint
Power Source USB C or DC Jack (5V, >3A)
PCB 4” x 3.1”
Indicators 1-Power, 5-User Controllable LEDs
USB-3.0 Client Port Access to USB0, SuperSpeed, dual-role mode via USB-C (no power

output)
USB-3.0 Host Port TUSB8041 4-port SuperSpeed hub on USB1, 2xType A Socket, up-

to 2.8A total, depending on power input
Ethernet Gigabit, RJ45, link indicator, speed indicator
SD/MMC Connector microSD , 1.8/3.3V
User Input

1. Reset Button

2. Boot Button

3. Power Button

Video Out miniDP
Audio via miniDP (stereo)
Weight 192gm (with heatsink)
Power Refer to main-board-power section

Board Component Locations

This section describes the key components on the board. It provides information on their location and function.
Familiarize yourself with the various components on the board.

Board components

Fig: BeagleBone AI-64 board components below shows the locations of the connectors, LEDs, and switches on
the PCB layout of the board.

• DC Power is the main DC input that accepts 5V power.

• Power Button alerts the processor to initiate the power down sequence and is used to power down the
board.

• GigaBit Ethernet is the connection to the LAN.

• Serial Debug ports WKUP_UART0 for early boot from the management MCU and UART0 is for the main
processor.

• USB Client is a USB-C connection to a PC that can also power the board.

• BOOT switch can be used to force a boot from the microSD card if the power is cycled on the board,
removing power and reapplying the power to the board.

• There are five green LEDs that can be used by the user.

• Reset Button allows the user to reset the processor.

• microSD slot is where a microSD card can be installed.

• miniDP connector is where the display is connected to.

2.5. BeagleBone AI-64 189

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.98: Fig: BeagleBone AI-64 board components

• USB Host can be connected different USB interfaces such as Wi-Fi, Bluetooth, Keyboard, etc.

On bottom side we have,

• TI TDA4VM processor.

• 4GB LPDDR4 Dual Data Rate RAM memory.

• Ethernet PHY physical interface to the network.

• eMMC onboard MMC chip that holds up to 16GB of data.

2.5.5 BeagleBone AI-64 High Level Specification

Fig: BeagleBone AI-64 Key Components below shows the high level block diagram of BeagleBone AI-64 board
surrounding TDA4VM SoC.

Processor

BeagleBone AI-64 uses TI J721E-family TDA4VM system-on-chip (SoC) which is part of the K3 Multicore SoC ar-
chitecture platform and it is targeted for the reliability and low-latency needs of the automotive market provide
for a great general purpose platform suitable for industrial automation, mobile robotics, building automation
and numerous hobby projects.

The SoC designed as a low power, high performance and highly integrated device architecture, adding sig-
nificant enhancement on processing power, graphics capability, video and imaging processing, virtualization
and coherent memory support. In addition, these SoCs support state of the art security and functional safety
features. For the remaining of this section device, SoC, and processor will be used interchangeably.

Some of the main distinguished characteristics of the device are:

• 64-bit architecture with virtualization and coherent memory support, which leverages full processing
capability of 64-bit Arm® Cortex®-A72

• Fully programmable industrial communication subsystems to enable future-proof designs for customers
that need to adopt the new Gigabit Time-sensitive Networks (TSN) standards, but still need full support
on legacy protocols and continuous system optimization over the product deployment

190 Chapter 2. Boards

https://www.ti.com/product/TDA4VM

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.99: Fig: BeagleBone AI-64 Key Components

2.5. BeagleBone AI-64 191

BeagleBoard Docs, Release 1.0.20230308-wip

• Integration of vision hardware processing accelerators to facilitate extensive processing requirements in
low power budget for automotive ADAS and machine vision applications

• Integration of a general-purpose microcontroller unit (MCU) with a dual Arm® Cortex®-R5F MCU subsys-
tem, available for general purpose use as two cores or in lockstep, intended to help customers achieve
functional safety goals for their end products

• Integration of a next-generation fixed and floating-point C71x Digital Signal Processor (DSP) that signifi-
cantly boosts power over a broad range of general signal processing tasks for both general applications
and automotive functions which also incorporates advanced techniques to improve control code effi-
ciency and ease of programming such as branch prediction, protected pipeline, precise exception and
virtual memory management

• Tightly coupled Matrix Multiplication Accelerator (MMA) that extends the C71x DSP architecture’s scalar
and vector facilities enabling deep learning and enhance vision, analytics and wide range of general ap-
plications. The achieved total TOPS (Tera Operations Per Second) performance significantly differentiates
the device for single board computer in machine vision and deep learning applications

• Key display features including flexibility to interface with different panel types (eDP, DSI, DPI) with multi-
layer hardware composition

• Integration of hardware features that help applications to achieve functional safety mechanisms

• Robust security architecture with sandboxed DMSC controller managing all secure configurations with
high performance client-server messaging scheme between secure DMSC and all cores

• Simplified solution for power supply management, enabling lower cost system solution (on-die bias LDOs
and power good comparators for minimal power sequencing requirements consistent with low cost supply
design)

The device is composed of the following main subsystems, across different domains of the SoC,
among others:

• One dual-core 64-bit Arm Cortex-A72 microprocessor subsystem at up to 2.0 GHz and up to 24K DMIPS
(Dhrystone Million Instructions per Second)

• Up to three Microcontroller Units (MCU), based on dual-core Arm Cortex-R5F processor running at up to
1.0 GHz, up to 12K DMIPS

• Up to two TMS320C66x DSP CorePac modules running at up to 1.35 GHz, up to 40 GFLOPS

• One C71x floating point, vector DSP running at up to 1.0 GHz, up to 80 GFLOPS

• One deep-learning MMA, up to 8 TOPS (8b) at 1.0 GHz

• Up to two gigabit dual-core Programmable Real-Time Unit and Industrial Communication Subsystems
(PRU_ICSSG)

• Two Navigator Subsystems (NAVSS) for data movement and control

• One multi-pipeline Display Subsystem (DSS) with one MIPI® Display Serial Interface Controller (DSI)
and shared MIPI D-PHY Transmitter (DPHY_TX), one Embedded DisplayPort Transmitter (EDP) with shared
Serializer/Deserializer (SERDES), and two MIPI Display Pixel Interface (DPI) ports

• Two Camera Streaming Interface Receivers (CSI_RX_IF) with dedicated MIPI D-PHYs (DPHY_RX)

• One Camera Streaming Interface Transmitter (CSI_TX_IF) with MIPI D-PHY Transmitter (DPHY_TX) shared
with DSI

• One Vision Processing Accelerator (VPAC) with image signal processor

• One Depth and Motion Processing Accelerator (DMPAC)

• One dual-core multi-standard HD Video Decoder (DECODER)

• One dual-core multi-standard HD Video Encoder (ENCODER)

• One Graphics Processing Unit (GPU)

• One Device Management and Security Controller (DMSC)

192 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

The device provides a rich set of peripherals such as:

• General connectivity peripherals, including:

– Two 12-bit general purpose Analog-to-Digital Converters (ADC)

– Ten Inter-Integrated Circuit (I2C) interfaces

– Three Improved Inter-Integrated Circuit (I3C) controllers

– Eleven master/slave Multichannel Serial Peripheral Interfaces
(MCSPI)

– Twelve configurable Universal Asynchronous Receiver/Transmitter
(UART) interfaces

– Ten General-Purpose Input/Output (GPIO) modules

• High-speed interfaces, including:

– Two Gigabit Ethernet Switch (CPSW) modules

– Two Dual-Role-Device (DRD) Universal Serial Bus Subsystems (US-
BSS) with integrated PHY

– Four Peripheral Component Interconnect express (PCIe) Gen3 sub-
systems

• Flash memory interfaces, including:

– One Octal SPI (OSPI) interface and one Quad SPI (QSPI) or one
QSPI and one HyperBus^TM^

– One General Purpose Memory Controller (GPMC) with Error Location
Module (ELM) and 8- or 16-bit-wide data bus width (supports
parallel NOR or NAND FLASH devices)

– Three Multimedia Card/Secure Digital (MMCSD) controllers

– One Universal Flash Storage (UFS) interface

• Industrial and control interfaces, including:

– Sixteen Controller Area Network (MCAN) interfaces with flexible
data rate support

– Three Enhanced Capture (ECAP) modules

– Six Enhanced Pulse-Width Modulation (EPWM) subsystems

– Three Enhanced Quadrature Encoder Pulse (EQEP) modules

• Audio peripherals, including:

– One Audio Tracking Logic (ATL)

– Twelve Multichannel Audio Serial Port (MCASP) modules supporting
up to 16 channels with independent TX/RX clock/sync domain

• One Video Processing Front End (VPFE) interface module

The device also integrates:

• Power distribution, reset controls and clock management components

• Power-management techniques for device power consumption minimization:

– Adaptive Voltage Scaling (AVS)

– Dynamic Frequency Scaling (DFS)

– Gated clocks

– Multiple voltage domains

2.5. BeagleBone AI-64 193

BeagleBoard Docs, Release 1.0.20230308-wip

– Independently controlled power domains for major modules

– Voltage and Temperature Management (VTM) module

– Power-on Reset Generators (PRG)

– Power Sleep Controllers (PSC)

• Optimized interconnect (CBASS) architecture to enable latency-critical real time network and IO applica-
tions

• Control modules (CTRL_MMRs) mainly associated with device top-level configurations such as:

– IO Pad and pin multiplexing configuration

– PLL control and associated High-Speed Dividers (HSDIV)

– Clock selection

– Analog function controls

• Multicore Shared Memory Controller (MSMC)

• DDR Subsystem (DDRSS) with Error Correcting Code (ECC), supporting LPDDR4

• 1KB RAM with ECC support for C71x boot vectors

• 2KB RAM with ECC support for A72 and R5F boot vectors

• 512KB On-Chip SRAM protected by ECC

• One Global Time Counter (GTC) module

• Thirty 32-bit counter timers with compare and capture modes

• Debug and trace capabilities

The device includes different modules for functional safety requirements support:

• MCU island with dual lock step Arm Cortex-R5F

• Safety enabled interconnect with implemented features to help with Freedom From Interference (FFI)

• Twelve Real Time Interrupt (RTI) modules with Windowed Watchdog Timer (WWDT) functionality to mon-
itor processor cores

• Sixteen Dual-Clock Comparators (DCC) to monitor clocking sources during run-time

• Three Error Signaling Modules (ESM) to enable error monitoring

• Temperature monitoring sensors

• ECC on all critical memories

• Dedicated hardware Memory Cyclic Redundancy Check (MCRC) blocks

The device supports the following main security functionalities among others:

• Secure Boot Management

• Public Key Accelerator (PKA) for large vector math operation

• Cryptographic acceleration (AES, 3DES, MD5, SHA1, SHA2-224, 256, 512 operation)

• Trusted Execution Environment (TEE)

• Secure storage support

• On-the-fly encryption and authentication support for OSPI interface

The device is partitioned into three functional domains as shown in Fig: Device Top-level Block Diagram, each
containing specific processing cores and peripherals:

• Wake-up (WKUP) domain

• Microcontroller (MCU) domain with one of the dual Cortex-R5 cluster

194 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

• MAIN domain

Fig. 2.100: Fig: Device Top-level Block Diagram

Memory

Described in the following sections are the three memory devices found on the board.

4GB LPDDR4 A single (1024M x 16bits x 2channels) LPDDR4 4Gb memory device is used. The memory used
is:

• Kingston Q3222PM1WDGTK-U

4Kb EEPROM A single 4Kb EEPROM (24FC04HT-I/OT) is provided on I2C0 that holds the board information.
This information includes board name, serial number, and revision information.

16GB Embedded MMC A single 16GB embedded MMC (eMMC) device is on the board. The device connects
to the MMC1 port of the processor, allowing for 8bit wide access. Default boot mode for the board will be MMC1
with an option to change it to MMC0, the SD card slot, for booting from the SD card as a result of removing and
reapplying the power to the board. Simply pressing the reset button will not change the boot mode. MMC0
cannot be used in 8Bit mode because the lower data pins are located on the pins used by the Ethernet port.
This does not interfere with SD card operation but it does make it unsuitable for use as an eMMC port if the 8
bit feature is needed.

MicroSD Connector The board is equipped with a single microSD connector to act as the secondary boot
source for the board and, if selected as such, can be the primary boot source. The connector will support larger
capacity microSD cards. The microSD card is not provided with the board. Booting from MMC0 will be used to
flash the eMMC in the production environment or can be used by the user to update the SW as needed.

Boot Modes As mentioned earlier, there are two boot modes:

• eMMC Boot: This is the default boot mode and will allow for the fastest boot time and will enable the
board to boot out of the box using the pre-flashed OS image without having to purchase an microSD card
or an microSD card writer.

2.5. BeagleBone AI-64 195

BeagleBoard Docs, Release 1.0.20230308-wip

• SD Boot: This mode will boot from the microSD slot. This mode can be used to override what is on the
eMMC device and can be used to program the eMMC when used in the manufacturing process or for field
updates.

Note: TODO: This section needs more work and references to greater detail. Other boot modes are possi-
ble. Software to support USB and serial boot modes is not provided by beagleboard.org._Please contact TI for
support of this feature.

A switch is provided to allow switching between the modes.

• Holding the boot switch down during a removal and reapplication of power without a microSD card in-
serted will force the boot source to be the USB port and if nothing is detected on the USB client port, it
will go to the serial port for download.

• Without holding the switch, the board will boot try to boot from the eMMC. If it is empty, then it will try
booting from the microSD slot, followed by the serial port, and then the USB port.

• If you hold the boot switch down during the removal and reapplication of power to the board, and you
have a microSD card inserted with a bootable image, the board will boot from the microSD card.

Note: Pressing the RESET button on the board will NOT result in a change of the boot mode. You MUST remove
power and reapply power to change the boot mode. The boot pins are sampled during power on reset from
the PMIC to the processor.The reset button on the board is a warm reset only and will not force a boot mode
change.

Power Management

The TPS65941213 and TPS65941111 power management device is used along with a separate LDO to provide
power to the system.

PC USB Interface

The board has a USB type-C connector that connects to USB0 port of the processor.

Serial Debug Ports

Two serial debug ports are provided on board via 3pin micro headers,

1. WKUP_UART0: Wake-up domain serial port

2. UART0: Main domain serial port

In order to use the interfaces a 3pin micro to 6pin dupont adaptor header is required with a 6 pin USB to TTL
adapter. The header is compatible with the one provided by FTDI and can be purchased for about $$12 to $$20
from various sources. Signals supported are TX and RX. None of the handshake signals are supported.

USB1 Host Port

On the board is a single USB Type A female connector with full LS/FS/HS Host support that connects to USB1
on the processor. The port can provide power on/off control and up to 1.5A of current at 5V. Under USB power,
the board will not be able to supply the full 1.5A, but should be sufficient to supply enough current for a lower
power USB device supplying power between 50 to 100mA.

196 Chapter 2. Boards

https://uk.farnell.com/element14/1103004000156/beaglebone-ai-serials-cable/dp/3291081

BeagleBoard Docs, Release 1.0.20230308-wip

Power Sources

The board can be powered from two different sources:

• A 5V > 3A power supply plugged into the barrel jack.

• A wall adaptor with 5V > 3A output power.

The power supply is not provided with the board but can be easily obtained from numerous sources. A 5V > 3A
supply is mandatory to have with the board, but if there is a cape plugged into the board or you have a power
hungry device or hub plugged into the host port, then more current may needed from the DC supply.

Reset Button

When pressed and released, causes a reset of the board.

Power Button

This button takes advantage of the input to the PMIC for power down features.

Indicators

There are a total of six green LEDs on the board.

• One green power LED indicates that power is applied and the power management IC is up.

• Five blue LEDs that can be controlled via the SW by setting GPIO pins.

2.5.6 Connectors

Expansion Connectors

The expansion interface on the board is comprised of two headers P8 (46 pin) & P9 (50 pin). All signals on the
expansion headers are 3.3V unless otherwise indicated.

Note: Do not connect 5V logic level signals to these pins or the board will be damaged.

Note: DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

Connector P8 The following tables show the pinout of the P8 expansion header. The SW is responsible for
setting the default function of each pin. Refer to the processor documentation for more information on these
pins and detailed descriptions of all of the pins listed. In some cases there may not be enough signals to
complete a group of signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.

Each row includes the gpiochipX and pinY in the format of X Y. You can use these values to directly control the
GPIO pins with the commands shown below.

2.5. BeagleBone AI-64 197

BeagleBoard Docs, Release 1.0.20230308-wip

to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset X Y=1

to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset X Y=0

For Example:

+---------+----------+
| Pin | P8.03 |
+=========+==========+
| GPIO | 1 20 |
+---------+----------+

Use the commands below for controlling this pin (P8.03) where X = 1 and Y =␣
↪→20

to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset 1 20=1

to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset 1 20=0

The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

P8.E1-P8.E4
E1 E2 E3 E4
USB1 DP USB1 DN VSYS_5V0 GND

P8.01-P8.02
P8.01 P8.02
GND GND

198 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

P8.03-P8.05
Pin P8.03 P8.04 P8.05
GPIO 1 20 1 48 1 33
BALL AH21 AC29 AH25
REG 0x00011C054 0x00011C0C4 0x00011C088
Page 46 30 50
MODE 0 PRG1_PRU0_GPO19 PRG0_PRU0_GPO5 PRG1_PRU1_GPO12
1 PRG1_PRU0_GPI19 PRG0_PRU0_GPI5 PRG1_PRU1_GPI12
2 PRG1_IEP0_EDC_SYNC_OUT0 ~ PRG1_RGMII2_TD1
3 PRG1_PWM0_TZ_OUT PRG0_PWM3_B2 PRG1_PWM1_A0
4 ~ ~ RGMII2_TD1
5 RMII5_TXD0 RMII3_TXD0 ~
6 MCAN6_TX ~ MCAN7_TX
7 GPIO0_20 GPIO0_48 GPIO0_33
8 ~ GPMC0_AD0 RGMII8_TD1
9 ~ ~ ~
10 VOUT0_EXTPCLKIN ~ VOUT0_DATA12
11 VPFE0_PCLK ~ ~
12 MCASP4_AFSX MCASP0_AXR3 MCASP9_AFSX
13 ~ ~ ~
14 ~ ~ ~
Bootstrap ~ BOOTMODE2 ~

P8.06-P8.09

Pin P8.06 P8.07 P8.08 P8.09
GPIO 1 34 1 15 1 14 1 17
BALL AG25 AD24 AG24 AE24
REG 0x00011C08C 0x00011C03C 0x00011C038 0x00011C044
Page 51 44 44 45
MODE 0 PRG1_PRU1_GPO13 PRG1_PRU0_GPO14 PRG1_PRU0_GPO13 PRG1_PRU0_GPO16
1 PRG1_PRU1_GPI13 PRG1_PRU0_GPI14 PRG1_PRU0_GPI13 PRG1_PRU0_GPI16
2 PRG1_RGMII2_TD2 PRG1_RGMII1_TD3 PRG1_RGMII1_TD2 PRG1_RGMII1_TXC
3 PRG1_PWM1_B0 PRG1_PWM0_A1 PRG1_PWM0_B0 PRG1_PWM0_A2
4 RGMII2_TD2 RGMII1_TD3 RGMII1_TD2 RGMII1_TXC
5 ~ ~ ~ ~
6 MCAN7_RX MCAN5_RX MCAN5_TX MCAN6_RX
7 GPIO0_34 GPIO0_15 GPIO0_14 GPIO0_17
8 RGMII8_TD2 ~ ~ ~
9 ~ RGMII7_TD3 RGMII7_TD2 RGMII7_TXC
10 VOUT0_DATA13 VOUT0_DATA19 VOUT0_DATA18 VOUT0_DATA21
11 VPFE0_DATA8 VPFE0_DATA3 VPFE0_DATA2 VPFE0_DATA5
12 MCASP9_AXR0 MCASP7_AXR1 MCASP7_AXR0 MCASP7_AXR3
13 MCASP4_ACLKR ~ ~ MCASP7_AFSR
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P8.10-P8.13

2.5. BeagleBone AI-64 199

BeagleBoard Docs, Release 1.0.20230308-wip

Pin P8.10 P8.11 P8.12 P8.13
GPIO 1 16 1 60 1 59 1 89
BALL AC24 AB24 AH28 V27
REG 0x00011C040 0x00011C0F4 0x00011C0F0 0x00011C168
Page 44 33 33 56
MODE 0 PRG1_PRU0_GPO15 PRG0_PRU0_GPO17 PRG0_PRU0_GPO16 RGMII5_TD1
1 PRG1_PRU0_GPI15 PRG0_PRU0_GPI17 PRG0_PRU0_GPI16 RMII7_TXD1
2 PRG1_RGMII1_TX_CTL PRG0_IEP0_EDC_SYNC_OUT1 PRG0_RGMII1_TXC I2C3_SCL
3 PRG1_PWM0_B1 PRG0_PWM0_B2 PRG0_PWM0_A2 ~
4 RGMII1_TX_CTL PRG0_ECAP0_SYNC_OUT RGMII3_TXC VOUT1_DATA4
5 ~ ~ ~ TRC_DATA2
6 MCAN6_TX ~ ~ EHRPWM0_B
7 GPIO0_16 GPIO0_60 GPIO0_59 GPIO0_89
8 ~ GPMC0_AD5 ~ GPMC0_A5
9 RGMII7_TX_CTL OBSCLK1 ~ ~
10 VOUT0_DATA20 ~ DSS_FSYNC1 ~
11 VPFE0_DATA4 ~ ~ ~
12 MCASP7_AXR2 MCASP0_AXR13 MCASP0_AXR12 MCASP11_ACLKX
13 MCASP7_ACLKR ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ BOOTMODE7 ~ ~

P8.14-P8.16

Pin P8.14 P8.15 P8.16
GPIO 1 75 1 61 1 62
BALL AF27 AB29 AB28
REG 0x00011C130 0x00011C0F8 0x00011C0FC
Page 37 33 34
MODE 0 PRG0_PRU1_GPO12 PRG0_PRU0_GPO18 PRG0_PRU0_GPO19
1 PRG0_PRU1_GPI12 PRG0_PRU0_GPI18 PRG0_PRU0_GPI19
2 PRG0_RGMII2_TD1 PRG0_IEP0_EDC_LATCH_IN0 PRG0_IEP0_EDC_SYNC_OUT0
3 PRG0_PWM1_A0 PRG0_PWM0_TZ_IN PRG0_PWM0_TZ_OUT
4 RGMII4_TD1 PRG0_ECAP0_IN_APWM_OUT ~
5 ~ ~ ~
6 ~ ~ ~
7 GPIO0_75 GPIO0_61 GPIO0_62
8 ~ GPMC0_AD6 GPMC0_AD7
9 ~ ~ ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP1_AXR8 MCASP0_AXR14 MCASP0_AXR15
13 ~ ~ ~
14 UART8_CTSn ~ ~
Bootstrap ~ ~ ~

200 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

P8.17-P8.19
Pin P8.17 P8.18 P8.19
GPIO 1 3 1 4 1 88
BALL AF22 AJ23 V29
REG 0x00011C00C 0x00011C010 0x00011C164
Page 40 40 57
MODE 0 PRG1_PRU0_GPO2 PRG1_PRU0_GPO3 RGMII5_TD2
1 PRG1_PRU0_GPI2 PRG1_PRU0_GPI3 UART3_TXD
2 PRG1_RGMII1_RD2 PRG1_RGMII1_RD3 ~
3 PRG1_PWM2_A0 PRG1_PWM3_A2 SYNC3_OUT
4 RGMII1_RD2 RGMII1_RD3 VOUT1_DATA3
5 RMII1_CRS_DV RMII1_RX_ER TRC_DATA1
6 ~ ~ EHRPWM0_A
7 GPIO0_3 GPIO0_4 GPIO0_88
8 GPMC0_WAIT1 GPMC0_DIR GPMC0_A4
9 RGMII7_RD2 RGMII7_RD3 ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP6_AXR0 MCASP6_AXR1 MCASP10_AXR1
13 ~ ~ ~
14 UART1_RXD UART1_TXD ~
Bootstrap ~ ~ ~

P8.20-P8.22

Pin P8.20 P8.21 P8.22
GPIO 1 76 1 30 1 5
BALL AF26 AF21 AH23
REG 0x00011C134 0x00011C07C 0x00011C014
Page 37 49 41
MODE 0 PRG0_PRU1_GPO13 PRG1_PRU1_GPO9 PRG1_PRU0_GPO4
1 PRG0_PRU1_GPI13 PRG1_PRU1_GPI9 PRG1_PRU0_GPI4
2 PRG0_RGMII2_TD2 PRG1_UART0_RXD PRG1_RGMII1_RX_CTL
3 PRG0_PWM1_B0 ~ PRG1_PWM2_B0
4 RGMII4_TD2 SPI6_CS3 RGMII1_RX_CTL
5 ~ RMII6_RXD1 RMII1_TXD0
6 ~ MCAN8_TX ~
7 GPIO0_76 GPIO0_30 GPIO0_5
8 ~ GPMC0_CSn0 GPMC0_CSn2
9 ~ PRG1_IEP0_EDIO_DATA_IN_OUT30 RGMII7_RX_CTL
10 ~ VOUT0_DATA9 ~
11 ~ ~ ~
12 MCASP1_AXR9 MCASP4_AXR3 MCASP6_AXR2
13 ~ ~ MCASP6_ACLKR
14 UART8_RTSn ~ UART2_RXD
Bootstrap ~ ~ ~

P8.23-P8.26

2.5. BeagleBone AI-64 201

BeagleBoard Docs, Release 1.0.20230308-wip

Pin P8.23 P8.24 P8.25 P8.26
GPIO 1 31 1 6 1 35 1 51
BALL AB23 AD20 AH26 AC27
REG 0x00011C080 0x00011C018 0x00011C090 0x00011C0D0
Page 50 41 51 31
MODE 0 PRG1_PRU1_GPO10 PRG1_PRU0_GPO5 PRG1_PRU1_GPO14 PRG0_PRU0_GPO8
1 PRG1_PRU1_GPI10 PRG1_PRU0_GPI5 PRG1_PRU1_GPI14 PRG0_PRU0_GPI8
2 PRG1_UART0_TXD ~ PRG1_RGMII2_TD3 ~
3 PRG1_PWM2_TZ_IN PRG1_PWM3_B2 PRG1_PWM1_A1 PRG0_PWM2_A1
4 ~ ~ RGMII2_TD3 ~
5 RMII6_CRS_DV RMII1_TX_EN ~ ~
6 MCAN8_RX ~ MCAN8_TX MCAN9_RX
7 GPIO0_31 GPIO0_6 GPIO0_35 GPIO0_51
8 GPMC0_CLKOUT GPMC0_WEn RGMII8_TD3 GPMC0_AD2
9 PRG1_IEP0_EDIO_DATA_IN_OUT31 ~ ~ ~
10 VOUT0_DATA10 ~ VOUT0_DATA14 ~
11 GPMC0_FCLK_MUX ~ ~ ~
12 MCASP5_ACLKX MCASP3_AXR0 MCASP9_AXR1 MCASP0_AXR6
13 ~ ~ MCASP4_AFSR ~
14 ~ ~ ~ UART6_RXD
Bootstrap ~ BOOTMODE0 ~ ~

P8.27-P8.29

Pin P8.27 P8.28 P8.29
GPIO 1 71 1 72 1 73
BALL AA28 Y24 AA25
REG 0x00011C120 0x00011C124 0x00011C128
Page 36 36 36
MODE 0 PRG0_PRU1_GPO8 PRG0_PRU1_GPO9 PRG0_PRU1_GPO10
1 PRG0_PRU1_GPI8 PRG0_PRU1_GPI9 PRG0_PRU1_GPI10
2 ~ PRG0_UART0_RXD PRG0_UART0_TXD
3 PRG0_PWM2_TZ_OUT ~ PRG0_PWM2_TZ_IN
4 ~ SPI3_CS3 ~
5 ~ ~ ~
6 MCAN11_RX PRG0_IEP0_EDIO_DATA_IN_OUT30 PRG0_IEP0_EDIO_DATA_IN_OUT31
7 GPIO0_71 GPIO0_72 GPIO0_73
8 GPMC0_AD10 GPMC0_AD11 GPMC0_AD12
9 ~ ~ CLKOUT
10 ~ DSS_FSYNC3 ~
11 ~ ~ ~
12 MCASP1_AFSX MCASP1_AXR5 MCASP1_AXR6
13 ~ ~ ~
14 ~ UART8_RXD UART8_TXD
Bootstrap ~ ~ ~

P8.30-P8.32

202 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Pin P8.30 P8.31 ~ P8.32 ~
GPIO 1 74 1 32 1 63 1 26 1 64
BALL AG26 AJ25 AE29 AG21 AD28
REG 0x00011C12C 0x00011C084 0x00011C100 0x00011C06C 0x00011C104
Page 37 50 34 48 34
MODE 0 PRG0_PRU1_GPO11 PRG1_PRU1_GPO11 PRG0_PRU1_GPO0 PRG1_PRU1_GPO5 PRG0_PRU1_GPO1
1 PRG0_PRU1_GPI11 PRG1_PRU1_GPI11 PRG0_PRU1_GPI0 PRG1_PRU1_GPI5 PRG0_PRU1_GPI1
2 PRG0_RGMII2_TD0 PRG1_RGMII2_TD0 PRG0_RGMII2_RD0 ~ PRG0_RGMII2_RD1
3 ~ ~ ~ ~ ~
4 RGMII4_TD0 RGMII2_TD0 RGMII4_RD0 ~ RGMII4_RD1
5 RMII4_TX_EN RMII2_TX_EN RMII4_RXD0 RMII5_TX_EN RMII4_RXD1
6 ~ ~ ~ MCAN6_RX ~
7 GPIO0_74 GPIO0_32 GPIO0_63 GPIO0_26 GPIO0_64
8 GPMC0_A26 RGMII8_TD0 UART4_CTSn GPMC0_WPn UART4_RTSn
9 ~ EQEP1_I ~ EQEP1_S ~
10 ~ VOUT0_DATA11 ~ VOUT0_DATA5 ~
11 ~ ~ ~ ~ ~
12 MCASP1_AXR7 MCASP9_ACLKX MCASP1_AXR0 MCASP4_AXR0 MCASP1_AXR1
13 ~ ~ ~ ~ ~
14 ~ ~ UART5_RXD TIMER_IO4 UART5_TXD
Bootstrap ~ ~ ~ ~ ~

P8.33-P8.35

Pin P8.33 ~ P8.34 P8.35 | ~
GPIO 1 25 1 111 1 7 1 24 1 116
BALL AH24 AA2 AD22 AD23 Y3
REG 0x00011C068 0x00011C1C0 0x00011C01C 0x00011C064 0x00011C1D4
Page 48 67 41 47 67
MODE 0 PRG1_PRU1_GPO4 SPI0_CS0 PRG1_PRU0_GPO6 PRG1_PRU1_GPO3 SPI1_CS0
1 PRG1_PRU1_GPI4 UART0_RTSn PRG1_PRU0_GPI6 PRG1_PRU1_GPI3 UART0_CTSn
2 PRG1_RGMII2_RX_CTL ~ PRG1_RGMII1_RXC PRG1_RGMII2_RD3 ~
3 PRG1_PWM2_B2 ~ PRG1_PWM3_A1 ~ UART5_RXD
4 RGMII2_RX_CTL ~ RGMII1_RXC RGMII2_RD3 ~
5 RMII2_TXD0 ~ RMII1_TXD1 RMII2_RX_ER ~
6 ~ ~ AUDIO_EXT_REFCLK0 ~ PRG0_IEP0_EDIO_OUTVALID
7 GPIO0_25 GPIO0_111 GPIO0_7 GPIO0_24 GPIO0_116
8 RGMII8_RX_CTL ~ GPMC0_CSn3 RGMII8_RD3 PRG0_IEP0_EDC_LATCH_IN0
9 EQEP1_B ~ RGMII7_RXC EQEP1_A ~
10 VOUT0_DATA4 ~ ~ VOUT0_DATA3 ~
11 VPFE0_DATA13 ~ ~ VPFE0_WEN ~
12 MCASP8_AXR2 ~ MCASP6_AXR3 MCASP8_AXR1 ~
13 MCASP8_ACLKR ~ MCASP6_AFSR MCASP3_AFSR ~
14 TIMER_IO3 ~ UART2_TXD TIMER_IO2 ~
Bootstrap ~ ~ ~ ~ ~

P8.36-P8.38

2.5. BeagleBone AI-64 203

BeagleBoard Docs, Release 1.0.20230308-wip

Pin P8.36 P8.37 ~ P8.38 ~
GPIO 1 8 1 106 1 11 1 105 1 9
BALL AE20 Y27 AD21 Y29 AJ20
REG 0x00011C020 0x00011C1AC 0x00011C02C 0x00011C1A8 0x00011C024
Page 42 58 43 58 42
MODE 0 PRG1_PRU0_GPO7 RGMII6_RD2 PRG1_PRU0_GPO10 RGMII6_RD3 PRG1_PRU0_GPO8
1 PRG1_PRU0_GPI7 UART4_RTSn PRG1_PRU0_GPI10 UART4_CTSn PRG1_PRU0_GPI8
2 PRG1_IEP0_EDC_LATCH_IN1 ~ PRG1_UART0_RTSn ~ ~
3 PRG1_PWM3_B1 UART5_TXD PRG1_PWM2_B1 UART5_RXD PRG1_PWM2_A1
4 ~ ~ SPI6_CS2 CLKOUT ~
5 AUDIO_EXT_REFCLK1 TRC_DATA19 RMII5_CRS_DV TRC_DATA18 RMII5_RXD0
6 MCAN4_TX EHRPWM5_A ~ EHRPWM_TZn_IN4 MCAN4_RX
7 GPIO0_8 GPIO0_106 GPIO0_11 GPIO0_105 GPIO0_9
8 ~ GPMC0_A22 GPMC0_BE0n_CLE GPMC0_A21 GPMC0_OEn_REn
9 ~ ~ PRG1_IEP0_EDIO_DATA_IN_OUT29 ~ ~
10 ~ ~ OBSCLK2 ~ VOUT0_DATA22
11 ~ ~ ~ ~ ~
12 MCASP3_AXR1 MCASP11_AXR5 MCASP3_AFSX MCASP11_AXR4 MCASP3_AXR2
13 ~ ~ ~ ~ ~
14 ~ ~ ~ ~ ~
Boot-
strap

~ ~ ~ ~ ~

P8.39-P8.41
Pin P8.39 P8.40 P8.41
GPIO 1 69 1 70 1 67
BALL AC26 AA24 AD29
REG 0x00011C118 0x00011C11C 0x00011C110
Page 35 36 35
MODE 0 PRG0_PRU1_GPO6 PRG0_PRU1_GPO7 PRG0_PRU1_GPO4
1 PRG0_PRU1_GPI6 PRG0_PRU1_GPI7 PRG0_PRU1_GPI4
2 PRG0_RGMII2_RXC PRG0_IEP1_EDC_LATCH_IN1 PRG0_RGMII2_RX_CTL
3 ~ ~ PRG0_PWM2_B2
4 RGMII4_RXC SPI3_CS0 RGMII4_RX_CTL
5 RMII4_TXD0 ~ RMII4_TXD1
6 ~ MCAN11_TX ~
7 GPIO0_69 GPIO0_70 GPIO0_67
8 GPMC0_A25 GPMC0_AD9 GPMC0_A24
9 ~ ~ ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP1_AXR3 MCASP1_AXR4 MCASP1_AXR2
13 ~ ~ ~
14 ~ UART2_TXD ~
Bootstrap ~ ~ ~

204 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

P8.42-P8.44
Pin P8.42 P8.43 P8.44
GPIO 1 68 1 65 1 66
BALL AB27 AD27 AC25
REG 0x00011C114 0x00011C108 0x00011C10C
Page 35 34 35
MODE 0 PRG0_PRU1_GPO5 PRG0_PRU1_GPO2 PRG0_PRU1_GPO3
1 PRG0_PRU1_GPI5 PRG0_PRU1_GPI2 PRG0_PRU1_GPI3
2 ~ PRG0_RGMII2_RD2 PRG0_RGMII2_RD3
3 ~ PRG0_PWM2_A2 ~
4 ~ RGMII4_RD2 RGMII4_RD3
5 ~ RMII4_CRS_DV RMII4_RX_ER
6 ~ ~ ~
7 GPIO0_68 GPIO0_65 GPIO0_66
8 GPMC0_AD8 GPMC0_A23 ~
9 ~ ~ ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP1_ACLKX MCASP1_ACLKR MCASP1_AFSR
13 ~ MCASP1_AXR10 MCASP1_AXR11
14 ~ ~ ~
Bootstrap BOOTMODE6 ~ ~

P8.45-P8.46
Pin P8.45 P8.46
GPIO 1 79 1 80
BALL AG29 Y25
REG 0x00011C140 0x00011C144
Page 38 38
MODE 0 PRG0_PRU1_GPO16 PRG0_PRU1_GPO17
1 PRG0_PRU1_GPI16 PRG0_PRU1_GPI17
2 PRG0_RGMII2_TXC PRG0_IEP1_EDC_SYNC_OUT1
3 PRG0_PWM1_A2 PRG0_PWM1_B2
4 RGMII4_TXC SPI3_CLK
5 ~ ~
6 ~ ~
7 GPIO0_79 GPIO0_80
8 ~ GPMC0_AD13
9 ~ ~
10 ~ ~
11 ~ ~
12 MCASP2_AXR2 MCASP2_AXR3
13 ~ ~
14 ~ ~
Bootstrap ~ BOOTMODE3

Connector P9 The following tables show the pinout of the P9 expansion header. The SW is responsible for
setting the default function of each pin. Refer to the processor documentation for more information on these
pins and detailed descriptions of all of the pins listed. In some cases there may not be enough signals to
complete a group of signals that may be required to implement a total interface.

The column heading is the pin number on the expansion header.

The GPIO row is the expected gpio identifier number in the Linux kernel.

Each row includes the gpiochipX and pinY in the format of X Y. You can use these values to directly control the
GPIO pins with the commands shown below.

to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset X Y=1

to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset X Y=0

For Example:

(continues on next page)

2.5. BeagleBone AI-64 205

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

+---------+----------+
| Pin | P9.11 |
+=========+==========+
| GPIO | 1 1 |
+---------+----------+

Use the commands below for controlling this pin (P9.11) where X = 1 and Y = 1

to set the GPIO pin state to HIGH
debian@BeagleBone:~$ gpioset 1 20=1

to set the GPIO pin state to LOW
debian@BeagleBone:~$ gpioset 1 20=0

The BALL row is the pin number on the processor.

The REG row is the offset of the control register for the processor pin.

The MODE # rows are the mode setting for each pin. Setting each mode to align with the mode column will
give that function on that pin.

If included, the 2nd BALL row is the pin number on the processor for a second processor pin connected to the
same pin on the expansion header. Similarly, all row headings starting with 2nd refer to data for this second
processor pin.

NOTES:

DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL
DAMAGE THE PROCESSOR AND VOID THE WARRANTY.

NO PINS ARE TO BE DRIVEN UNTIL AFTER THE SYS_RESET LINE GOES HIGH.

P9.01-P9.05
P9.01 P9.02 P9.03 P9.04 P9.05
GND GND VOUT_3V3 VOUT_3V3 VIN

P9.06-P9.10
P9.06 P9.07 P9.08 P9.09 P9.10
VIN VOUT_SYS VOUT_SYS RESET# RESET#

P9.11-P9.13
Pin P9.11 P9.12 P9.13
GPIO 1 1 1 45 1 2
BALL AC23 AE27 AG22
REG 0x00011C004 0x00011C0B8 0x00011C008
Page 39 29 40
MODE 0 PRG1_PRU0_GPO0 PRG0_PRU0_GPO2 PRG1_PRU0_GPO1
1 PRG1_PRU0_GPI0 PRG0_PRU0_GPI2 PRG1_PRU0_GPI1
2 PRG1_RGMII1_RD0 PRG0_RGMII1_RD2 PRG1_RGMII1_RD1
3 PRG1_PWM3_A0 PRG0_PWM2_A0 PRG1_PWM3_B0
4 RGMII1_RD0 RGMII3_RD2 RGMII1_RD1
5 RMII1_RXD0 RMII3_CRS_DV RMII1_RXD1
6 ~ ~ ~
7 GPIO0_1 GPIO0_45 GPIO0_2
8 GPMC0_BE1n UART3_RXD GPMC0_WAIT0
9 RGMII7_RD0 ~ RGMII7_RD1
10 ~ ~ ~
11 ~ ~ ~
12 MCASP6_ACLKX MCASP0_ACLKR MCASP6_AFSX
13 ~ ~ ~
14 UART0_RXD ~ UART0_TXD
Bootstrap ~ ~ ~

206 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

P9.14-P9.16
Pin P9.14 P9.15 P9.16
GPIO 1 93 1 47 1 94
BALL U27 AD25 U24
REG 0x00011C178 0x00011C0C0 0x00011C17C
Page 56 30 56
MODE 0 RGMII5_RD3 PRG0_PRU0_GPO4 RGMII5_RD2
1 UART3_CTSn PRG0_PRU0_GPI4 UART3_RTSn
2 ~ PRG0_RGMII1_RX_CTL ~
3 UART6_RXD PRG0_PWM2_B0 UART6_TXD
4 VOUT1_DATA8 RGMII3_RX_CTL VOUT1_DATA9
5 TRC_DATA6 RMII3_TXD1 TRC_DATA7
6 EHRPWM2_A ~ EHRPWM2_B
7 GPIO0_93 GPIO0_47 GPIO0_94
8 GPMC0_A9 ~ GPMC0_A10
9 ~ ~ ~
10 ~ ~ ~
11 ~ ~ ~
12 MCASP11_AXR0 MCASP0_AXR2 MCASP11_AXR1
13 ~ ~ ~
14 ~ ~ ~
Bootstrap ~ ~ ~

P9.17-P9.18

Pin P9.17 ~ P9.18 ~
GPIO 1 28 1 115 1 40 1 120
BALL AC21 AA3 AH22 Y2
REG 0x00011C074 0x00011C1D0 0x00011C0A4 0x00011C1E4
Page 49 67 53 68
MODE 0 PRG1_PRU1_GPO7 SPI0_D1 PRG1_PRU1_GPO19 SPI1_D1
1 PRG1_PRU1_GPI7 ~ PRG1_PRU1_GPI19 ~
2 PRG1_IEP1_EDC_LATCH_IN1 I2C6_SCL PRG1_IEP1_EDC_SYNC_OUT0 I2C6_SDA
3 ~ ~ PRG1_PWM1_TZ_OUT ~
4 SPI6_CS0 ~ SPI6_D1 ~
5 RMII6_RX_ER ~ RMII6_TXD1 ~
6 MCAN7_TX ~ PRG1_ECAP0_IN_APWM_OUT ~
7 GPIO0_28 GPIO0_115 GPIO0_40 GPIO0_120
8 ~ ~ ~ PRG0_IEP1_EDC_SYNC_OUT0
9 ~ ~ ~ ~
10 VOUT0_DATA7 ~ VOUT0_PCLK ~
11 VPFE0_DATA15 ~ ~ ~
12 MCASP4_AXR1 ~ MCASP5_AXR1 ~
13 ~ ~ ~ ~
14 UART3_TXD ~ ~ ~
Bootstrap ~ ~ ~ ~

2.5. BeagleBone AI-64 207

BeagleBoard Docs, Release 1.0.20230308-wip

P9.19-P9.20
Pin P9.19 ~ P9.20 ~
GPIO 2 1 1 78 2 2 1 77
BALL W5 AF29 W6 AE25
REG 0x00011C208 0x00011C13C 0x00011C20C 0x00011C138
Page 19 38 19 37
MODE 0 MCAN0_RX PRG0_PRU1_GPO15 MCAN0_TX PRG0_PRU1_GPO14
1 ~ PRG0_PRU1_GPI15 ~ PRG0_PRU1_GPI14
2 ~ PRG0_RGMII2_TX_CTL ~ PRG0_RGMII2_TD3
3 ~ PRG0_PWM1_B1 ~ PRG0_PWM1_A1
4 I2C2_SCL RGMII4_TX_CTL I2C2_SDA RGMII4_TD3
5 ~ ~ ~ ~
6 ~ ~ ~ ~
7 GPIO1_1 GPIO0_78 GPIO1_2 GPIO0_77
8 ~ ~ ~ ~
9 ~ ~ ~ ~
10 ~ ~ ~ ~
11 ~ ~ ~ ~
12 ~ MCASP2_AXR1 ~ MCASP2_AXR0
13 ~ ~ ~ ~
14 ~ UART2_RTSn ~ UART2_CTSn
Bootstrap ~ ~ ~ ~

P9.21-P9.22

Pin P9.21 ~ P9.22 ~
GPIO 1 39 1 90 1 38 1 91
BALL AJ22 U28 AC22 U29
REG 0x00011C0A0 0x00011C16C 0x00011C09C 0x00011C170
Page 52 56 52 54
MODE 0 PRG1_PRU1_GPO18 RGMII5_TD0 PRG1_PRU1_GPO17 RGMII5_TXC
1 PRG1_PRU1_GPI18 RMII7_TXD0 PRG1_PRU1_GPI17 RMII7_TX_EN
2 PRG1_IEP1_EDC_LATCH_IN0 I2C3_SDA PRG1_IEP1_EDC_SYNC_OUT1 I2C6_SCL
3 PRG1_PWM1_TZ_IN ~ PRG1_PWM1_B2 ~
4 SPI6_D0 VOUT1_DATA5 SPI6_CLK VOUT1_DATA6
5 RMII6_TXD0 TRC_DATA3 RMII6_TX_EN TRC_DATA4
6 PRG1_ECAP0_SYNC_IN EHRPWM1_A PRG1_ECAP0_SYNC_OUT EHRPWM1_B
7 GPIO0_39 GPIO0_90 GPIO0_38 GPIO0_91
8 ~ GPMC0_A6 ~ GPMC0_A7
9 VOUT0_VP2_VSYNC ~ VOUT0_VP2_DE ~
10 VOUT0_VSYNC ~ VOUT0_DE ~
11 ~ ~ VPFE0_DATA10 ~
12 MCASP5_AXR0 MCASP11_AFSX MCASP5_AFSX MCASP10_AXR2
13 ~ ~ ~ ~
14 VOUT0_VP0_VSYNC ~ VOUT0_VP0_DE ~
Bootstrap ~ ~ BOOTMODE1 ~

P9.23-P9.25

208 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Pin P9.23 P9.24 ~ P9.25 ~
GPIO 1 10 1 119 1 13 1 127 1 104
BALL AG20 Y5 AJ24 AC4 W26
REG 0x00011C028 0x00011C1E0 0x00011C034 0x00011C200 0x00011C1A4
Page 42 68 43 69 54
MODE 0 PRG1_PRU0_GPO9 SPI1_D0 PRG1_PRU0_GPO12 UART1_CTSn RGMII6_RXC
1 PRG1_PRU0_GPI9 UART5_RTSn PRG1_PRU0_GPI12 MCAN3_RX ~
2 PRG1_UART0_CTSn I2C4_SCL PRG1_RGMII1_TD1 ~ ~
3 PRG1_PWM3_TZ_IN UART2_TXD PRG1_PWM0_A0 ~ AU-

DIO_EXT_REFCLK2
4 SPI6_CS1 ~ RGMII1_TD1 SPI2_D0 VOUT1_DE
5 RMII5_RXD1 ~ ~ EQEP0_S TRC_DATA17
6 ~ ~ MCAN4_RX ~ EHRPWM4_B
7 GPIO0_10 GPIO0_119 GPIO0_13 GPIO0_127 GPIO0_104
8 GPMC0_ADVn_ALE PRG0_IEP1_EDC_LATCH_IN0 ~ ~ GPMC0_A20
9 PRG1_IEP0_EDIO_DATA_IN_OUT28 ~ RGMII7_TD1 ~ VOUT1_VP0_DE
10 VOUT0_DATA23 ~ VOUT0_DATA17 ~ ~
11 ~ ~ VPFE0_DATA1 ~ ~
12 MCASP3_ACLKX ~ MCASP7_AFSX ~ MCASP10_AXR7
13 ~ ~ ~ ~ ~
14 ~ ~ ~ ~ ~
Boot-
strap

~ ~ ~ ~ ~

P9.26-P9.27

Pin P9.26 ~ P9.27 ~
GPIO 1 118 1 12 1 46 1 124
BALL Y1 AF24 AD26 AB1
REG 0x00011C1DC 0x00011C030 0x00011C0BC 0x00011C1F4
Page 67 43 30 69
MODE 0 SPI1_CLK PRG1_PRU0_GPO11 PRG0_PRU0_GPO3 UART0_RTSn
1 UART5_CTSn PRG1_PRU0_GPI11 PRG0_PRU0_GPI3 TIMER_IO7
2 I2C4_SDA PRG1_RGMII1_TD0 PRG0_RGMII1_RD3 SPI0_CS3
3 UART2_RXD PRG1_PWM3_TZ_OUT PRG0_PWM3_A2 MCAN2_TX
4 ~ RGMII1_TD0 RGMII3_RD3 SPI2_CLK
5 ~ ~ RMII3_RX_ER EQEP0_B
6 ~ MCAN4_TX ~ ~
7 GPIO0_118 GPIO0_12 GPIO0_46 GPIO0_124
8 PRG0_IEP0_EDC_SYNC_OUT0 ~ UART3_TXD ~
9 ~ RGMII7_TD0 ~ ~
10 ~ VOUT0_DATA16 ~ ~
11 ~ VPFE0_DATA0 ~ ~
12 ~ MCASP7_ACLKX MCASP0_AFSR ~
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P9.28-P9.29

2.5. BeagleBone AI-64 209

BeagleBoard Docs, Release 1.0.20230308-wip

Pin P9.28 ~ P9.29 ~
GPIO 2 11 1 43 2 14 1 53
BALL U2 AF28 V5 AB25
REG 0x00011C230 0x00011C0B0 0x00011C23C 0x00011C0D8
Page 18 29 68 31
MODE 0 ECAP0_IN_APWM_OUT PRG0_PRU0_GPO0 TIMER_IO1 PRG0_PRU0_GPO10
1 SYNC0_OUT PRG0_PRU0_GPI0 ECAP2_IN_APWM_OUT PRG0_PRU0_GPI10
2 CPTS0_RFT_CLK PRG0_RGMII1_RD0 OBSCLK0 PRG0_UART0_RTSn
3 ~ PRG0_PWM3_A0 ~ PRG0_PWM2_B1
4 SPI2_CS3 RGMII3_RD0 ~ SPI3_CS2
5 I3C0_SDAPULLEN RMII3_RXD1 ~ PRG0_IEP0_EDIO_DATA_IN_OUT29
6 SPI7_CS0 ~ SPI7_D1 MCAN10_RX
7 GPIO1_11 GPIO0_43 GPIO1_14 GPIO0_53
8 ~ ~ ~ GPMC0_AD4
9 ~ ~ ~ ~
10 ~ ~ ~ ~
11 ~ ~ ~ ~
12 ~ MCASP0_AXR0 ~ MCASP0_AFSX
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ BOOTMODE5 ~

P9.30-P9.31

Pin P9.30 ~ P9.31 ~
GPIO 2 13 1 44 2 12 1 52
BALL V6 AE28 U3 AB26
REG 0x00011C238 0x00011C0B4 0x00011C234 0x00011C0D4
Page 68 29 18 31
MODE 0 TIMER_IO0 PRG0_PRU0_GPO1 EXT_REFCLK1 PRG0_PRU0_GPO9
1 ECAP1_IN_APWM_OUT PRG0_PRU0_GPI1 SYNC1_OUT PRG0_PRU0_GPI9
2 SYSCLKOUT0 PRG0_RGMII1_RD1 ~ PRG0_UART0_CTSn
3 ~ PRG0_PWM3_B0 ~ PRG0_PWM3_TZ_IN
4 ~ RGMII3_RD1 ~ SPI3_CS1
5 ~ RMII3_RXD0 ~ PRG0_IEP0_EDIO_DATA_IN_OUT28
6 SPI7_D0 ~ SPI7_CLK MCAN10_TX
7 GPIO1_13 GPIO0_44 GPIO1_12 GPIO0_52
8 ~ ~ ~ GPMC0_AD3
9 ~ ~ ~ ~
10 ~ ~ ~ ~
11 ~ ~ ~ ~
12 ~ MCASP0_AXR1 ~ MCASP0_ACLKX
13 ~ ~ ~ ~
14 ~ ~ ~ UART6_TXD
Bootstrap BOOTMODE4 ~ ~ ~

P9.32-P9.35
P9.32 P9.34
VDD_ADC GND

210 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Pin P9.33 ~ P9.35 ~
GPIO ~ 1 50 ~ 1 55
BALL K24 AC28 K29 AH27
REG 0x00011C140 0x00011C0CC 0x00011C148 0x00011C0E0
Page 20 31 20 32
MODE 0 MCU_ADC0_AIN4 PRG0_PRU0_GPO7 MCU_ADC0_AIN6 PRG0_PRU0_GPO12
1 ~ PRG0_PRU0_GPI7 ~ PRG0_PRU0_GPI12
2 ~ PRG0_IEP0_EDC_LATCH_IN1 ~ PRG0_RGMII1_TD1
3 ~ PRG0_PWM3_B1 ~ PRG0_PWM0_A0
4 ~ PRG0_ECAP0_SYNC_IN ~ RGMII3_TD1
5 ~ ~ ~ ~
6 ~ MCAN9_TX ~ ~
7 ~ GPIO0_50 ~ GPIO0_55
8 ~ GPMC0_AD1 ~ ~
9 ~ ~ ~ ~
10 ~ ~ ~ DSS_FSYNC0
11 ~ ~ ~ ~
12 ~ MCASP0_AXR5 ~ MCASP0_AXR8
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P9.36-P9.37

Pin P9.36 ~ P9.37 ~
GPIO ~ 1 56 ~ 1 57
BALL K27 AH29 K28 AG28
REG 0x00011C144 0x00011C0E4 0x00011C138 0x00011C0E8
Page 20 32 20 32
MODE 0 MCU_ADC0_AIN5 PRG0_PRU0_GPO13 MCU_ADC0_AIN2 PRG0_PRU0_GPO14
1 ~ PRG0_PRU0_GPI13 ~ PRG0_PRU0_GPI14
2 ~ PRG0_RGMII1_TD2 ~ PRG0_RGMII1_TD3
3 ~ PRG0_PWM0_B0 ~ PRG0_PWM0_A1
4 ~ RGMII3_TD2 ~ RGMII3_TD3
5 ~ ~ ~ ~
6 ~ ~ ~ ~
7 ~ GPIO0_56 ~ GPIO0_57
8 ~ ~ ~ UART4_RXD
9 ~ ~ ~ ~
10 ~ DSS_FSYNC2 ~ ~
11 ~ ~ ~ ~
12 ~ MCASP0_AXR9 ~ MCASP0_AXR10
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P9.38-P9.39

2.5. BeagleBone AI-64 211

BeagleBoard Docs, Release 1.0.20230308-wip

Pin P9.38 ~ P9.39 ~
GPIO ~ 1 58 ~ 1 54
BALL L28 AG27 K25 AJ28
REG 0x00011C13C 0x00011C0EC 0x00011C130 0x00011C0DC
Page ~ 33 20 32
MODE 0 MCU_ADC0_AIN3 PRG0_PRU0_GPO15 MCU_ADC0_AIN0 PRG0_PRU0_GPO11
1 ~ PRG0_PRU0_GPI15 ~ PRG0_PRU0_GPI11
2 ~ PRG0_RGMII1_TX_CTL ~ PRG0_RGMII1_TD0
3 ~ PRG0_PWM0_B1 ~ PRG0_PWM3_TZ_OUT
4 ~ RGMII3_TX_CTL ~ RGMII3_TD0
5 ~ ~ ~ ~
6 ~ ~ ~ ~
7 ~ GPIO0_58 ~ GPIO0_54
8 ~ UART4_TXD ~ ~
9 ~ ~ ~ CLKOUT
10 ~ DSS_FSYNC3 ~ ~
11 ~ ~ ~ ~
12 ~ MCASP0_AXR11 ~ MCASP0_AXR7
13 ~ ~ ~ ~
14 ~ ~ ~ ~
Bootstrap ~ ~ ~ ~

P9.40-P9.42

Pin P9.40 ~ P9.41 P9.42 ~
GPIO ~ 1 81 2 0 1 123 1 18
BALL K26 AA26 AD5 AC2 AJ21
REG 0x00011C134 0x00011C148 0x00011C204 0x00011C1F0 0x00011C04C
Page 20 38 69 68 45
MODE 0 MCU_ADC0_AIN1 PRG0_PRU1_GPO18 UART1_RTSn UART0_CTSn PRG1_PRU0_GPO17
1 ~ PRG0_PRU1_GPI18 MCAN3_TX TIMER_IO6 PRG1_PRU0_GPI17
2 ~ PRG0_IEP1_EDC_LATCH_IN0 ~ SPI0_CS2 PRG1_IEP0_EDC_SYNC_OUT1
3 ~ PRG0_PWM1_TZ_IN ~ MCAN2_RX PRG1_PWM0_B2
4 ~ SPI3_D0 SPI2_D1 SPI2_CS0 ~
5 ~ ~ EQEP0_I EQEP0_A RMII5_TXD1
6 ~ MCAN12_TX ~ ~ MCAN5_TX
7 ~ GPIO0_81 GPIO1_0 GPIO0_123 GPIO0_18
8 ~ GPMC0_AD14 ~ ~ ~
9 ~ ~ ~ ~ ~
10 ~ ~ ~ ~ ~
11 ~ ~ ~ ~ VPFE0_DATA6
12 ~ MCASP2_AFSX ~ ~ MCASP3_AXR3
13 ~ ~ ~ ~ ~
14 ~ UART2_RXD ~ ~ ~
Bootstrap ~ ~ ~ ~ ~

P9.43-P9.46
P9.43 P9.44 P9.45 P9.46
GND GND GND GND

2.5.7 BeagleBone AI-64 Mechanical

Dimensions and Weight

Size: 102.5 x 80 (4” x 3.15”)

Max height: #TODO#

PCB Layers: #TODO#

PCB thickness: 2mm (0.08”)

RoHS Compliant: Yes

Weight: 192gm

212 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Silkscreen and Component Locations

Fig. 2.101: Fig: Board Dimensions

Fig. 2.102: Fig: Top silkscreen

2.5.8 Pictures

2.5.9 Support Information

All support for this design is through BeagleBoard.org community at: link: BeagleBoard.org forum .

2.5. BeagleBone AI-64 213

https://forum.beagleboard.org/

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.103: Fig: Bottom silkscreen

Fig. 2.104: Fig: BeagleBone AI-64 front

Fig. 2.105: Fig: BeagleBone AI-64 back

214 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.106: Fig: BeagleBone AI-64 back with heatsink

Fig. 2.107: Fig: BeagleBone AI-64 front at 45° angle

Fig. 2.108: Fig: BeagleBone AI-64 back at 45° angle

2.5. BeagleBone AI-64 215

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.109: Fig: BeagleBone AI-64 back with heatsink at 45° angle

Fig. 2.110: Fig: BeagleBone AI-64 ports

216 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Hardware Design

You can find all BeagleBone AI-64 hardware files here under the hw folder.

Software Updates

Follow instructions below to download the latest image for your BeagleBone AI-64:

1. Go to BeagleBoard.org distro page.

2. Filter Software Distributions for BeagleBone AI-64 from dropdown and download the image.

Fig. 2.111: Filter Software Distributions for BeagleBone AI-64

Tip: You can follow the Update board with latest software guide for more information on flashing the down-
loaded image to your board.

To see what SW revision is loaded into the eMMC check /etc/dogtag. It should look something like as shown
below,

` root@BeagleBone:~# cat /etc/dogtag BeagleBoard.org Debian Bullseye
Xfce Image 2022-01-14 `

RMA Support

If you feel your board is defective or has issues, request an Return Merchandise Application (RMA) by filling
out the form at http://beagleboard.org/support/rma . You will need the serial number and revision of the board.
The serial numbers and revisions keep moving. Different boards can have different locations depending on
when they were made. The following figures show the three locations of the serial and revision number.

2.5. BeagleBone AI-64 217

https://git.beagleboard.org/beagleboard/beaglebone-ai-64
https://www.beagleboard.org/distros
http://beagleboard.org/support/rma

BeagleBoard Docs, Release 1.0.20230308-wip

Troubleshooting video output issues

Warning: When connecting to an HDMI monitor, make sure your miniDP adapter is active. A passive
adapter will not work. See Fig: Display adapters.

Getting Help If you need some up to date troubleshooting techniques, you can post your queries on link:
BeagleBoard.org forum

2.5.10 Update software on BeagleBone AI-64

Production boards currently ship with the factory-installed 2022-01-14-8GB image. To upgrade from the soft-
ware image on your BeagleBone AI-64 to the latest, you don’t need to completely reflash the board. If you do
want to reflash it, visit the flashing instructions on the getting started page. Factory Image update (without
reflashing)…

1 sudo apt update
2 sudo apt install --only-upgrade bb-j721e-evm-firmware generic-sys-mods
3 sudo apt upgrade

Update U-Boot:

to ensure only tiboot3.bin is in boot0, the pre-production image we tried to do more in boot0, but failed…

1 sudo /opt/u-boot/bb-u-boot-beagleboneai64/install-emmc.sh
2 sudo /opt/u-boot/bb-u-boot-beagleboneai64/install-microsd.sh
3 sudo reboot

Update Kernel and SGX modules:

1 sudo apt install bbb.io-kernel-5.10-ti-k3-j721e

Update xfce:

1 sudo apt install bbb.io-xfce4-desktop

Update ti-edge-ai 8.2 examples

1 sudo apt install ti-edgeai-8.2-base ti-vision-apps-8.2 ti-vision-apps-eaik-
↪→firmware-8.2

Cleanup:

1 sudo apt autoremove --purge

218 Chapter 2. Boards

https://forum.beagleboard.org/

BeagleBoard Docs, Release 1.0.20230308-wip

2.5.11 Edge AI

Getting Started

Hardware setup BeagleBone® AI-64 has TI’s TDA4VM SoC which houses dual core A72, high performance vi-
sion accelerators, video codec accelerators, latest C71x and C66x DSP, high bandwidth realtime IPs for capture
and display, GPU, dedicated safety island security accelerators. The SoC is power optimized to provide best
in class performance for perception, sensor fusion, localization and path planning tasks in robotics, industrial
and automotive applications.

For more details visit https://www.ti.com/product/TDA4VM

BeagleBone® AI-64 BeagleBone® AI-64 brings a complete system for developing artificial intelligence (AI)
and machine learning solutions with the convenience and expandability of the BeagleBone® platform and the
peripherals on board to get started right away learning and building applications. With locally hosted, ready-
to-use, open-source focused tool chains and development environment, a simple web browser, power source
and network connection are all that need to be added to start building performance-optimized embedded
applications. Industry-leading expansion possibilities are enabled through familiar BeagleBone® cape headers,
with hundreds of open-source hardware examples and dozens of readily available embedded expansion options
available off-the-shelf.

To run the demos on BeagleBone® AI-64 you will require,

• BeagleBone® AI-64

• USB camera (Any V4L2 compliant 1MP/2MP camera, Eg. Logitech C270/C920/C922)

• Full HD eDP/HDMI display

• Minimum 16GB high performance SD card

• 100Base-T Ethernet cable connected to internet

• UART cable

• External Power Supply or Power Accessory Requirements

a. Nominal Output Voltage: 5VDC

b. Maximum Output Current: 5000 mA

Connect the components to the SK as shown in the image.

USB Camera UVC (USB video class) compliant USB cameras are supported on the BeagleBone® AI-64. The
driver for the same is enabled in linux image. The linux image has been tested with C270/C920/C922 versions
of Logitech USB cameras. Please refer to pub_edgeai_multiple_usb_cams to stream frommultiple USB cameras
simultaneously.

IMX219 Raw sensor IMX219 camera module from Raspberry pi / Arducam is supported by
BeagleBone® AI-64. It is a 8MP sensor with no ISP, which can transmit raw SRGGB8 frames over
CSI lanes at 1080p 60 fps. This camera module can be ordered from https://www.amazon.com/
Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS The camera can be connected to any of the 2 RPi
zero 22 pin camera headers on BB AI-64 as shown below

Note that the headers have to be lifted up to connect the cameras

Note: To be updated By default IMX219 is disabled. After connecting the camera you can enable it by
specifying the dtb overlay file in /run/media/mmcblk0p1/uenv.txt as below,

name_overlays=k3-j721e-edgeai-apps.dtbo k3-j721e-sk-rpi-cam-imx219.
dtbo

2.5. BeagleBone AI-64 219

https://www.ti.com/product/TDA4VM
https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS
https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.112: BeagleBone® AI-64 for Edge AI connections

Reboot the board after editing and saving the file.

Two RPi cameras can be connected to 2 headers for multi camera use-cases

Please refer pub_edgeai_camera_sources to know how to list all the cameras connected and select which one
to use for the demo.

By default imx219 will be configured to capture at 8 bit, but it also supports 10 bit capture in 16 bit container.
To use it in 10 bit mode, below steps are required:

• Modify the /opt/edge_ai_apps/scripts/setup_cameras.sh to set the for-
mat to 10 bit like below

CSI_CAM_0_FMT='[fmt:SRGGB8_1X10/1920x1080]'
CSI_CAM_1_FMT='[fmt:SRGGB8_1X10/1920x1080]'

• Change the imaging binaries to use 10 bit versions

mv /opt/imaging/imx219/dcc_2a.bin /opt/imaging/imx219/dcc_2a_8b.bin
mv /opt/imaging/imx219/dcc_viss.bin /opt/imaging/imx219/dcc_viss_8b.
↪→bin
mv /opt/imaging/imx219/dcc_2a_10b.bin /opt/imaging/imx219/dcc_2a.bin
mv /opt/imaging/imx219/dcc_viss_10b.bin /opt/imaging/imx219/dcc_viss.
↪→bin

• Set the input format in the /opt/edge_ai_apps/configs/
rpiV2_cam_example.yaml as rggb10

Software setup

Preparing SD card image Download the bullseye-xfce-edgeai-arm64 image from the links be-
low and flash it to SD card using Balena etcher tool.

• To use via SD card: bbai64-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz

220 Chapter 2. Boards

https://www.balena.io/etcher/
https://rcn-ee.net/rootfs/bb.org/testing/2022-08-02/bullseye-xfce-edgeai-arm64/bbai64-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz

BeagleBoard Docs, Release 1.0.20230308-wip

• To flash on eMMC: bbai64-emmc-flasher-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz

The Balena etcher tool can be installed either on Windows/Linux. Just download the etcher image and follow
the instructions to prepare the SD card.

Fig. 2.113: Balena Etcher tool to flash SD card with Processor linux image Linux for Edge AI

The etcher image is created for 16 GB SD cards, if you are using larger SD card, it is possible to expand the
root filesystem to use the full SD card capacity using below steps

#find the SD card device entry using lsblk (Eg: /dev/sdc)
#use the following commands to expand the filesystem
#Make sure you have write permission to SD card or run the commands as root

#Unmount the BOOT and rootfs partition before using parted tool
umount /dev/sdX1
umount /dev/sdX2

#Use parted tool to resize the rootfs partition to use
#the entire remaining space on the SD card
#You might require sudo permissions to execute these steps
parted -s /dev/sdX resizepart 2 '100%'
e2fsck -f /dev/sdX2
resize2fs /dev/sdX2

#replace /dev/sdX in above commands with SD card device entry

Power ON and Boot Ensure that the power supply is disconnected before inserting the SD card. Once the
SD card is firmly inserted in its slot and the board is powered ON, the board will take less than 20sec to boot
and display a wallpaper as shown in the image below.

You can also view the boot log by connecting the UART cable to your PC and use a serial port communications
program.

For Linux OS minicom works well. Please refer to the below documentation on ‘minicom’ for more details.

2.5. BeagleBone AI-64 221

https://rcn-ee.net/rootfs/bb.org/testing/2022-08-02/bullseye-xfce-edgeai-arm64/bbai64-emmc-flasher-debian-11.4-xfce-edgeai-arm64-2022-08-02-10gb.img.xz

BeagleBoard Docs, Release 1.0.20230308-wip

https://help.ubuntu.com/community/Minicom

When starting minicom, turn on the colors options like below:

sudo minicom -D /dev/ttyUSB2 -c on

For Windows OS Tera Term works well. Please refer to the below documentation on ‘TeraTerm’ for more
details

https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows

Note: Baud rate should be configured to 115200 bps in serial port communication program. You may not see
any log in the UART console if you connect to it after the booting is complete or login prompt may get lost in
between boot logs, press ENTER to get login prompt

As part of the linux systemd /opt/edge_ai_apps/init_script.sh is executed which does the
below,

• This kills weston compositor which holds the display pipe. This step will make the wallpaper showing on
the display disappear and come back

• The display pipe can now be used by ‘kmssink’ GStreamer element while running the demo applications.

• The script can also be used to setup proxies if connected behind a firewall.

Once Linux boots login as root user with no password.

Connect remotely If you don’t prefer the UART console, you can also access the device with the IP address
that is shown on the display.

With the IP address one can ssh directly to the board, view the contents and run the demos.

For best experience we recommend using VSCode which can be downloaded from here.

https://code.visualstudio.com/download

You also require the “Remote development extension pack” installed in VSCode as mentioned here:

https://code.visualstudio.com/docs/remote/ssh

Running Simple demos

This chapter describes how to run Python and C++ demo applications in edge_ai_apps with live camera and
display.

Note: Please note that the Python demos are useful for quick prototyping while C++ demos are similar by
design but tuned for performance.

Running Python based demo applications Python based demos are simple executable scripts written for
image classification, object detection and semantic segmentation. Demos are configured using a YAML file.
Details on configuration file parameters can be found in pub_edgeai_configuration

Sample configuration files for out of the box demos can be found in edge_ai_apps/configs this folder
also contains a template config file which has brief info on each configurable parameter edge_ai_apps/
configs/app_config_template.yaml

Here is how a Python based image classification demo can be run,

222 Chapter 2. Boards

https://help.ubuntu.com/community/Minicom
https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows
https://code.visualstudio.com/download
https://code.visualstudio.com/docs/remote/ssh
https://git.ti.com/cgit/edgeai/edge_ai_apps

BeagleBoard Docs, Release 1.0.20230308-wip

1 # go to edge-ai-apps folder
2 debian@beaglebone:~$ cd /opt/edge_ai_apps/apps_python
3

4 # enable root (password: temppwd)
5 debian@beaglebone:~$ sudo su
6 [sudo] password for beaglebone:
7

8 # use edge-ai-apps
9 debian@beaglebone:/opt/edge_ai_apps/apps_cpp# sudo ./app_edgeai.py ../

↪→configs/image_classification.yaml

The demo captures the input frames from connected USB camera and passes through pre-processing, inference
and post-processing before sent to display. Sample output for image classification and object detection demos
are as below,

To exit the demo press Ctrl+C.

Building and running C++ based demo applications C++ apps needs to be built directly on target and
requires header files of different deep-learning runtime framework and its dependencies which are installed in
the setup script. The setup script builds the C++ apps when executed. However one can also follow below
steps to clean build C++ apps

debian@beaglebone:/opt/edge_ai_apps/apps_cpp# rm -rf build bin lib
debian@beaglebone:/opt/edge_ai_apps/apps_cpp# mkdir build
debian@beaglebone:/opt/edge_ai_apps/apps_cpp# cd build
debian@beaglebone:/opt/edge_ai_apps/apps_cpp/build# cmake ..
debian@beaglebone:/opt/edge_ai_apps/apps_cpp/build# make -j2

Run the demo once the application is successfully built

debian@beaglebone:/opt/edge_ai_apps/apps_cpp# ./bin/Release/app_edgeai ../
↪→configs/image_classification.yaml

To exit the demo press Ctrl+C.

Note: Both Python and C++ applications are similar by construction and can accept the same config file and
command line arguments

Note: The C++ apps built on Yocto Linux may not run in Docker as there could be a mismatch in Glib and
other related tools. So its highly recommended to rebuild the C++ apps within the Docker environment.

2.5. BeagleBone AI-64 223

BeagleBoard Docs, Release 1.0.20230308-wip

DL models for Edge Inference

Model Downloader Tool TI Model Zoo is a large collection of deep learning models validated to work on TI
processors for edge AI. It hosts several pre-compiled model artifacts for TI hardware.

Use the Model Downloader Tool to download more models on target as shown,

debian@beaglebone:/opt/edge_ai_apps# ./download_models.sh

The script will launch an interactive menu showing the list of available, pre-imported models for download. The
downloaded models will be placed under /opt/model_zoo/ directory

Fig. 2.114: Model downloader tool menu option to download models

The script can also be used in a non-interactive way as shown below:

debian@beaglebone:/opt/edge_ai_apps# ./download_models.sh --help

Import Custom Models The BeagleBone® AI-64 Linux for Edge AI also supports importing pre-trained cus-
tom models to run inference on target.

The SDK makes use of pre-compiled DNN (Deep Neural Network) models and performs inference using various
OSRT (open source runtime) such as TFLite runtime, ONNX runtime and Neo AI-DLR. In order to infer a DNN,
SDK expects the DNN and associated artifacts in the below directory structure.

TFL-OD-2010-ssd-mobV2-coco-mlperf-300x300
│
├── param.yaml
│
├── artifacts
│ ├── 264_tidl_io_1.bin
│ ├── 264_tidl_net.bin
│ ├── 264_tidl_net.bin.layer_info.txt
│ ├── 264_tidl_net.bin_netLog.txt
│ ├── 264_tidl_net.bin.svg

(continues on next page)

224 Chapter 2. Boards

https://github.com/TexasInstruments/edgeai-modelzoo

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

│ ├── allowedNode.txt
│ └── runtimes_visualization.svg
│
└── model

└── ssd_mobilenet_v2_300_float.tflite

DNN directory structure Each DNN must have the following 3 components:

1. model: This directory contains the DNN being targeted to infer

2. artifacts: This directory contains the artifacts generated after the compilation of DNN for SDK, and
described in pub_edgeai_compile_artifacts

3. param.yaml: A configuration file in yaml format to provide basic information about DNN, and associated
pre and post processing parameters. More details can be find pub_edgeai_params

Param file format Each DNN has its own pre-process, inference and post-process parameters to get the
correct output. This information is typically available in the training software that was used to train the model.
In order to convey this information to the SDK in a standardized fashion, we have defined a set of parameters
that describe these operations. These parameters are in the param.yaml file.

Please see sample yaml files for various tasks such as image classification, semantic segmentation and object
detection in edgeai-benchmark examples. Descriptions of various parameters are also in the yaml files. If
users want to bring their own model to the SDK, then they need to prepare this information offline and get to
the SDK. In next section we explain how to prepare this information

DNN compilation for SDK – Basic Instructions The BeagleBone® AI-64 Linux for Edge AI supports three
different runtimes to infer a DNN, and user can choose a run time depending on the format of DNN. We recom-
mend users to use different run times and compare the performance and select the one which provides best
performance. User can find the steps to generate the artifacts directory at Edge AI TIDL Tools

DNN compilation for SDK – Advanced Instructions For beginners who are trying to compile models for
the SDK, we recommend the basic instructions given in the previous section. However, DNNs have lot of variety
and some models may need a different kind of preprocessing or postprocessing operations. In order to help
customers deal with different kinds of models, we have prepared amodel zoo in the repository edgeai-modelzoo

For the DNNs which are part of TI’s model zoo, one can find the compilation settings and pre-compiled model
artifacts in edgeai-benchmark repository. Instructions are also given to compile custom models. When using
edgeai-benchmark for model compilation, the yaml file is automatically generated and artifacts are packaged
in the way SDK understands. Please follow the instructions in the repository to get started.

Demo Configuration file

The demo config file uses YAML format to define input sources, models, outputs and finally the flows which de-
fines how everything is connected. Config files for out-of-box demos are kept in edge_ai_apps/configs
folder. The folder contains config files for all the use cases and also multi-input and multi-inference case. The
folder also has a template YAML file app_config_template.yaml which has detailed explanation of
all the parameters supported in the config file.

Config file is divided in 4 sections:

1. Inputs

2. Models

3. Outputs

4. Flows

2.5. BeagleBone AI-64 225

https://github.com/TexasInstruments/edgeai-benchmark/tree/master/examples/configs/yaml
https://github.com/TexasInstruments/edgeai-tidl-tools/blob/master/examples/osrt_python/README.md#model-compilation-on-pc
https://github.com/TexasInstruments/edgeai-modelzoo
https://github.com/TexasInstruments/edgeai-benchmark
https://github.com/TexasInstruments/edgeai-benchmark

BeagleBoard Docs, Release 1.0.20230308-wip

Inputs The input section defines a list of supported inputs like camera, filesrc etc. Their properties like shown
below.

inputs:
input0: #Camera Input

source: /dev/video2 #Device file entry of the␣
↪→camera

format: jpeg #Input data format␣
↪→supported by camera

width: 1280 #Width and Height of the␣
↪→input

height: 720
framerate: 30 #Framerate of the source

input1: #Video Input
source: ../data/videos/video_0000_h264.mp4 #Video file
format: h264 #File encoding format
width: 1280
height: 720
framerate: 25

input2: #Image Input
source: ../data/images/%04d.jpg #Sequence of Image files,␣

↪→printf style formatting is used
width: 1280
height: 720
index: 0 #Starting Index␣

↪→(optional)
framerate: 1

All supported inputs are listed in template config file. Below are the details of most commonly used inputs.

Camera sources (v4l2) v4l2src GStreamer element is used to capture frames from camera sources which
are exposed as v4l2 devices. In Linux, there are many devices which are implemented as v4l2 devices. Not all
of them will be camera devices. You need to make sure the correct device is configured for running the demo
successfully.

init_script.sh is ran as part of systemd, which detects all cameras connected and prints the detail like
below in the UART console:

debian@beaglebone:/opt/edge_ai_apps# ./init_script.sh
USB Camera detected

device = /dev/video18
format = jpeg

CSI Camera 0 detected
device = /dev/video2
name = imx219 8-0010
format = [fmt:SRGGB8_1X8/1920x1080]
subdev_id = 2
isp_required = yes

IMX390 Camera 0 detected
device = /dev/video18
name = imx390 10-001a
format = [fmt:SRGGB12_1X12/1936x1100 field: none]
subdev_id = /dev/v4l-subdev7
isp_required = yes
ldc_required = yes

script can also be run manually later to get the camera details.

From the above log we can determine that 1 USB camera is connected (/dev/video18), and 1 CSI camera is
connected (/dev/video2) which is imx219 raw sensor and needs ISP. IMX390 camera needs both ISP and LDC.

226 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Using this method, you can configure correct device for camera capture in the input section of config file.

input0:
source: /dev/video18 #USB Camera
format: jpeg #if connected USB camera supports jpeg
width: 1280
height: 720
framerate: 30

input1:
source: /dev/video2 #CSI Camera
format: auto #let the gstreamer negotiate the format
width: 1280
height: 720
framerate: 30

input2:
source: /dev/video2 #IMX219 raw sensor that needs ISP
format: rggb #ISP will be added in the pipeline
width: 1920
height: 1080
framerate: 30
subdev-id: 2 #needed by ISP to control sensor params via ioctls

input3:
source: /dev/video2 #IMX390 raw sensor that needs ISP
width: 1936
height: 1100
format: rggb12 #ISP will be added in the pipeline
subdev-id: 2 #needed by ISP to control sensor params via ioctls
framerate: 30
sen-id: imx390
ldc: True #LDC will be added in the pipeline

Make sure to configure correct format for camera input. jpeg for USB camera that supports MJPEG (Ex.
C270 logitech USB camera). auto for CSI camera to allow gstreamer to negotiate the format. rggb for
sensor that needs ISP.

Video sources H.264 and H.265 encoded videos can be provided as input sources to the demos. Sample
video files are provided under /opt/edge_ai_apps/data/videos/video_0000_h264.mp4
and /opt/edge_ai_apps/data/videos/video_000_h265.mp4

input1:
source: ../data/videos/video_0000_h264.mp4
format: h264
width: 1280
height: 720
framerate: 25

input2:
source: ../data/videos/video_0000_h265.mp4
format: h265
width: 1280
height: 720
framerate: 25

Make sure to configure correct format for video input as shown above. By default the format is set to auto
which will then use the GStreamer bin decodebin instead.

Image sources JPEG compressed images can be provided as inputs to the demos. A sample set of images
are provided under /opt/edge_ai_apps/data/images. The names of the files are numbered se-

2.5. BeagleBone AI-64 227

BeagleBoard Docs, Release 1.0.20230308-wip

quentially and incrementally and the demo plays the files at the fps specified by the user.

input2:
source: ../data/images/%04d.jpg
width: 1280
height: 720
index: 0
framerate: 1

RTSP sources H.264 encoded video streams either coming from a RTSP compliant IP camera or via RTSP
server running on a remote PC can be provided as inputs to the demo.

input0:
source: rtsp://172.24.145.220:8554/test # rtsp stream url, replace this␣

↪→with correct url
width: 1280
height: 720
framerate: 30

Note: Usually video streams from any IP camera will be encrypted and cannot be played back directly without
a decryption key. We tested RTSP source by setting up an RTSP server on a Ubuntu 18.04 PC by referring to
this writeup, Setting up RTSP server on PC

Models The model section defines a list of models that are used in the demo. Path to the model directory
is a required argument for each model and rest are optional properties specific to given use cases like shown
below.

models:
model0:

model_path: ../models/segmentation/ONR-SS-871-deeplabv3lite-mobv2-
↪→cocoseg21-512x512 #Model Directory

alpha: 0.4 ␣
↪→ #alpha for blending segmentation mask (optional)

model1:
model_path: ../models/detection/TFL-OD-202-ssdLite-mobDet-DSP-coco-

↪→320x320
viz_threshold: 0.3 ␣

↪→ #Visualization threshold for adding bounding boxes␣
↪→(optional)

model2:
model_path: ../models/classification/TVM-CL-338-mobileNetV2-qat
topN: 5 ␣

↪→ #Number of top N classes (optional)

Below are some of the use case specific properties:

1. alpha: This determines the weight of the mask for blending the semantic segmentation output with the
input image alpha * mask + (1 - alpha) * image

2. viz_threshold: Score threshold to draw the bounding boxes for detected objects in object detection. This
can be used to control the number of boxes in the output, increase if there are too many and decrease
if there are very few

3. topN: Number of most probable classes to overlay on image classification output

The content of the model directory and its structure is discussed in detail in pub_edgeai_import_custom_models

Outputs The output section defines a list of supported outputs.

228 Chapter 2. Boards

https://gist.github.com/Santiago-vdk/80c378a315722a1b813ae5da1661f890

BeagleBoard Docs, Release 1.0.20230308-wip

outputs:
output0: #Display␣

↪→Output
sink: kmssink
width: 1920 #Width and␣

↪→Height of the output
height: 1080
connector: 39 #Connector␣

↪→ID for kmssink (optional)

output1: #Video Output
sink: ../data/output/videos/output_video.mkv #Output␣

↪→video file
width: 1920
height: 1080

output2: #Image Output
sink: ../data/output/images/output_image_%04d.jpg #Image file␣

↪→name, printf style formatting is used
width: 1920
height: 1080

All supported outputs are listed in template config file. Below are the details of most commonly used outputs

Display Sink (kmssink) When you have only one display connected to the SK, kmssink will try to use it
for displaying the output buffers. In case you have connected multiple display monitors (e.g. Display Port
and HDMI), you can select a specific display for kmssink by passing a specific connector ID number. Following
command finds out the connected displays available to use.

Note: Run this command outside docker container. The first number in each line is the connector-id which we
will use in next step.

debian@beaglebone:/opt/edge_ai_apps# modetest -M tidss -c | grep connected
39 38 connected DP-1 530x300 12 38
48 0 disconnected HDMI-A-1 0x0 0 47

From above output, we can see that connector ID 39 is connected. Configure the connector ID in the output
section of the config file.

Video sinks The post-processed outputs can be encoded in H.264 format and stored on disk. Please specify
the location of the video file in the configuration file.

output1:
sink: ../data/output/videos/output_video.mkv
width: 1920
height: 1080

Image sinks The post-processed outputs can be stored as JPEG compressed images. Please specify the
location of the image files in the configuration file. The images will be named sequentially and incrementally
as shown.

output2:
sink: ../data/output/images/output_image_%04d.jpg
width: 1920
height: 1080

Flows The flows section defines how inputs, models and outputs are connected. Multiple flows can be defined
to achieve multi input, multi inference like below.

2.5. BeagleBone AI-64 229

BeagleBoard Docs, Release 1.0.20230308-wip

flows:
flow0: #First Flow

input: input0 #Input for the Flow
models: [model1, model2] #List of models to be used
outputs: [output0, output0] #Outputs to be used for each model␣

↪→inference output
mosaic: #Positions to place the inference␣

↪→outputs in the output frame
mosaic0:

width: 800
height: 450
pos_x: 160
pos_y: 90

mosaic1:
width: 800
height: 450
pos_x: 960
pos_y: 90

flow1: #Second Flow
input: input1
models: [model0, model3]
outputs: [output0, output0]
mosaic:

mosaic0:
width: 800
height: 450
pos_x: 160
pos_y: 540

mosaic1:
width: 800
height: 450
pos_x: 960
pos_y: 540

Each flow should have exactly 1 input, n models to infer the given input and n outputs to render the output
of each inference. Along with input, models and outputs it is required to define n mosaics which are the
position of the inference output in the final output plane. This is needed because multiple inference outputs
can be rendered to same output (Ex: Display).

Command line arguments Limited set of command line arguments can be provided, run with ‘-h’ or ‘–help’
option to list the supported parameters.

usage: Run : ./app_edgeai.py -h for help

positional arguments:
config Path to demo config file

ex: ./app_edgeai.py ../configs/app_config.yaml

optional arguments:
-h, --help show this help message and exit
-n, --no-curses Disable curses report

default: Disabled
-v, --verbose Verbose option to print profile info on stdout

default: Disabled

Running Advance demos

The same Python and C++ demo applications can be used to run multiple inference models and also work with
multiple inputs with just simple changes in the config file.

230 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

From a repo of input sources, output sources andmodels one can define advance dataflows which connect them
in various configurations. Details on configuration file parameters can be found in pub_edgeai_configuration

Single input multi inference demo Here is an example of a single-input, multi-inference demo which takes
a camera input and run multiple networks on each of them.

debian@beaglebone:/opt/edge_ai_apps/apps_python# ./app_edgeai.py ../configs/
↪→single_input_multi_infer.yaml

Sample output for single input, multi inference demo is as shown below,

Fig. 2.115: Sample output showing single input, mutli-inference output

We can specify the output window location and sizes as shown in the configuration file,

flows:
flow0:

input: input0
models: [model0, model1, model2, model3]
outputs: [output0, output0, output0, output0]
mosaic:

mosaic0:
width: 800
height: 450
pos_x: 160
pos_y: 90

mosaic1:
width: 800
height: 450
pos_x: 960
pos_y: 90

mosaic2:
width: 800
height: 450
pos_x: 160
pos_y: 540

mosaic3:
(continues on next page)

2.5. BeagleBone AI-64 231

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

width: 800
height: 450
pos_x: 960
pos_y: 540

Multi input multi inference demo Here is an example of a multi-input, multi-inference demo which takes
a camera input and video input and runs multiple networks on each of them.

debian@beaglebone:/opt/edge_ai_apps/apps_python# ./app_edgeai.py ../configs/
↪→multi_input_multi_infer.yaml

Sample output for multi input, multi inference demo is as shown below,

Fig. 2.116: Sample output showing multi-input, mutli-inference output

We can specify the output window location and sizes as shown in the configuration file,

flows:
flow0:

input: input0
models: [model1, model2]
outputs: [output0, output0]
mosaic:

mosaic0:
width: 800
height: 450
pos_x: 160
pos_y: 90

mosaic1:
width: 800
height: 450
pos_x: 960
pos_y: 90

flow1:
input: input1
models: [model0, model3]

(continues on next page)

232 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

outputs: [output0, output0]
mosaic:

mosaic0:
width: 800
height: 450
pos_x: 160
pos_y: 540

mosaic1:
width: 800
height: 450
pos_x: 960
pos_y: 540

Docker Environment

Docker is a set of “platform as a service” products that uses the OS-level virtualization to deliver software in
packages called containers. Docker container provides a quick start environment to the developer to run the
out of box demos and build applications.

The Docker image is based on Ubuntu 20.04.LTS and contains different open source components like OpenCV,
GStreamer, Python and pip packages which are required to run the demos. The user can choose to install any
additional 3rd party applications and packages as required.

Building Docker image The docker/Dockerfile in the edge_ai_apps repo describes the recipe for creating
the Docker container image. Feel free to review and update it to include additional packages before building
the image.

Note: Building Docker image on target using the provided Dockerfile will take about 15-20minutes to complete
with good internet connection. Building Docker containers on target can be slow and resource constrained. The
Dockerfile provided will build on target without any issues but if you add more packages or build components
from source, running out of memory can be a common problem. As an alternative we highly recommend trying
QEMU builds for cross-compiling the images for arm64 architecture on a PC and then load the compiled image
on target.

Initiate the Docker image build as shown,

debian@beaglebone:/opt/edge_ai_apps/docker#./docker_build.sh

Running the Docker container Enter the Docker session as shown,

debian@beaglebone:/opt/edge_ai_apps/docker#./docker_run.sh

This will start a Ubuntu 20.04.LTS image based Docker container and the prompt will change as below,

[docker] debian@beaglebone:/opt/edge_ai_apps#

The Docker container has been created in privilege mode, so that it has root capabilities to all devices on the
target system like Network etc. The container file system also mounts the target file system of /dev, /opt to
access camera, display and other hardware accelerators the SoC has to offer.

Note: It is highly recommended to use the docker_run.sh script to launch the Docker container because this
script will take care of saving any changes made to the filesystem. This will make sure that any modifications
to the Docker filesystem including new package installation, updates to some files and also command history is
saved automatically and is available the next time you launch the container. The container will be committed

2.5. BeagleBone AI-64 233

BeagleBoard Docs, Release 1.0.20230308-wip

only if you exit from the container explicitly. If you restart the board without exiting container, any changes
done from last saved state will be lost.

Note: After building and running the docker container, one needs to run setup_script.sh before
running any of the demo applications. Please refer to pub_edgeai_install_dependencies for more details.

Handling proxy settings If the board running the Docker container is behind a proxy server, the default
settings for downloading files and installing packages via apt-get will not work. If you are running the board
from TI network, docker build and run scripts will automatically detect and configure necessary proxy settings

For other cases, you need to modify the script /usr/bin/setup_proxy.sh to add the custom proxy
settings required for your network.

Additional Docker commands
Note: This section is provided only for additional reference and not required to run out-of-box demos

Commit Docker container

Generally, containers have a short life cycle. If the container has any local changes it is good to save the
changes on top of the existing Docker image. When re-running the Docker image, the local changes can be
restored.

Following commands show how to save the changes made to the last container. Note that this is already done
automatically by docker_run.sh when you exit the container.

cont_id=`docker ps -q -l`
docker commit $cont_id edge_ai_kit
docker container rm $cont_id

For more information refer: Commit Docker image

Save Docker Image

Docker image can be saved as tar file by using the command below:

docker save --output <pre_built_docker_image.tar>

For more information refer here. Save Docker image

Load Docker image

Load a previously saved Docker image using the command below:

docker load --input <pre_built_docker_image.tar>

For more information refer here. Load Docker image

Remove Docker image

Docker image can be removed by using the command below:

Remove selected image:
docker rmi <image_name/ID>

Remove all image:
docker image prune -a

For more information refer rmi reference and Image prune reference

Remove Docker container

234 Chapter 2. Boards

https://docs.docker.com/engine/reference/commandline/commit/
https://docs.docker.com/engine/reference/commandline/save/
https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/commandline/rmi/
https://docs.docker.com/engine/reference/commandline/image_prune/

BeagleBoard Docs, Release 1.0.20230308-wip

Docker container can be removed by using the command below:

Remove selected container:
docker rm <container_ID>

Remove all container:
docker container prune

For more information refer here. rm reference and Container Prune reference

Relocating Docker Root Location The default location for Docker files is /var/lib/docker. Any Docker
images created will be stored here. This will be a problem anytime the SD card is updated with a new targetfs.
If a secondary storage (SSD or USB based storage) is available, then it is recommended to relocate the default
Docker root location so as to preserve any existing Docker images. Once the relocation has been done, the
Docker content will not be affected by any future targetfs updates or accidental corruptions of the SD card.

The following steps outline the process for Docker root directory relocation assuming that the current Docker
root is not at the desired location. If the current location is the desired location then exit this procedure.

1. Run ‘Docker info’ command inspect the output. Locate the line with content Docker Root Dir. It will list
the current location.

2. To preserve any existing images, export them to .tar files for importing later into the new location.

3. Inspect the content under /etc/docker to see if there is a file by name daemon.json. If the file is not
present then create /etc/docker/docker.json and add the following content. Update the ‘key:value’ pair
for the key “graph” to reflect the desired root location. If the file already exists, then make sure that the
line with “graph” exists in the file and points to the desired target location.

{
”graph”: ”/run/media/nvme0n1/docker_root”,
”storage-driver”: ”overlay”,
”live-restore”: true

}

In the configuration above, the key/value pair ‘“graph”: “/run/media/nvme0n1/docker_root”’ defines the
root location ‘/run/media/nvme0n1/docker_root’.

4. Once the daemon.json file has been copied and updated, run the following commands

$ systemctl restart docker
$ docker info

Make sure that the new Docker root appears under Docker Root Dir value.

5. If you exported the existing images in step (2) then import them and they will appear under the new
Docker root.

6. Anytime the SD card is updated with a new targetfs, steps (1), (3), and (4) need to be followed.

Additional references

https://docs.docker.com/engine/reference/commandline/images/
https://docs.docker.com/engine/reference/commandline/ps/

Data Flows

The app_edgeai application at a high level can be split into 3 parts,

• Input pipeline - Grabs a frame from camera, video, image or RTSP source

• Output pipeline - Sends the output to display or a file

2.5. BeagleBone AI-64 235

https://docs.docker.com/engine/reference/commandline/rm/
https://docs.docker.com/engine/reference/commandline/container_prune/
https://docs.docker.com/engine/reference/commandline/images/
https://docs.docker.com/engine/reference/commandline/ps/

BeagleBoard Docs, Release 1.0.20230308-wip

• Compute pipeline - Performs pre-processing, inference and post-processing

Here are the data flows for each reference demo and the corresponding GStreamer launch strings that
app_edgeai application generates. User can interact with the application via the pub_edgeai_configuration

Image classification In this demo, a frame is grabbed from an input source and split into two paths. The
“analytics” path resizes the input maintaining the aspect ratio and crops the input to match the resolution
required to run the deep learning network. The “visualization” path is provided to the post-processing module
which overlays the detected classes. Post-processed output is given to HW mosaic plugin which positions and
resizes the output window on an empty background before sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !␣
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert␣
↪→out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115␣
↪→top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=0 mean-0=123.
↪→675000 mean-1=116.280000 mean-2=103.530000 scale-0=0.017125 scale-1=0.
↪→017507 scale-2=0.017429 tensor-format=rgb out-pool-size=4 ! application/x-
↪→tensor-tiovx ! appsink name=pre_0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Object Detection In this demo, a frame is grabbed from an input source and split into two paths. The
“analytics” path resizes the input to match the resolution required to run the deep learning network. The
“visualization” path is provided to the post-processing module which overlays rectangles around detected ob-
jects. Post-processed output is given to HW mosaic plugin which positions and resizes the output window on
an empty background before sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !␣
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

236 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.117: GStreamer based data-flow pipeline for image classification demo with USB camera and display

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 2.118: GStreamer based data-flow pipeline for object detection demo with USB camera and display

2.5. BeagleBone AI-64 237

BeagleBoard Docs, Release 1.0.20230308-wip

Semantic Segmentation In this demo, a frame is grabbed from an input source and split into two paths.
The “analytics” path resize the input to match the resolution required to run the deep learning network. The
“visualization” path is provided to the post-processing module which blends each segmented pixel to a color
map. Post-processed output is given to HW mosaic plugin which positions and resizes the output window on
an empty background before sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !␣
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-
↪→type=10 channel-order=0 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.015625 scale-1=0.015625 scale-2=0.015625 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 2.119: GStreamer based data-flow pipeline for semantic segmentation demo with USB camera and display

Human Pose Estimation In this demo, a frame is grabbed from an input source and split into two paths.
The “analytics” path resize the input to match the resolution required to run the deep learning network. The
“visualization” path is provided to the post-processing module which overlays the keypoints and lines to draw

238 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

the pose. Post-processed output is given to HW mosaic plugin which positions and resizes the output window
on an empty background before sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video2 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !␣
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=640, height=640 ! tiovxdlpreproc data-
↪→type=10 target=0 channel-order=0 mean-0=0.000000 mean-1=0.000000 mean-2=0.
↪→000000 scale-0=1.000000 scale-1=1.000000 scale-2=1.000000 tensor-
↪→format=bgr out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true
GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
tiovxmosaic name=mosaic_0 background=/tmp/background_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 2.120: GStreamer based data-flow pipeline for Human Pose Estimation demo with USB camera and display

Video source In this demo, a video file is read from a known location and passed to a de-muxer to extract
audio and video streams, the video stream is parsed and raw encoded information is passed to a HW video
decoder. Note that H.264 and H.265 encoded videos are supported, making use of the respective HW decoders.
The resulting output is split into two paths. The “analytics” path resizes the input to match the resolution
required to run the deep learning network. The “visualization” path is provided to the post-processing module
which does the required post process required by the model. Post-processed output is given to HW mosaic
plugin which positions and resizes the output window on an empty background before sending to display.

2.5. BeagleBone AI-64 239

BeagleBoard Docs, Release 1.0.20230308-wip

GStreamer input pipeline:

filesrc location=/opt/edge_ai_apps/data/videos/video_0000_h264.mp4 ! qtdemux␣
↪→! h264parse ! v4l2h264dec ! video/x-raw, format=NV12 ! tiovxmultiscaler␣
↪→name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 2.121: GStreamer based data-flow pipeline with video file input source and display

RTSP source In this demo, a video file is read from a RTSP source and passed to a de-muxer to extract audio
and video streams, the video stream is parsed and raw encoded information is passed to a video decoder
and the resulting output is split into two paths. The “analytics” path resizes the input to match the resolution
required to run the deep learning network. The “visualization” path is provided to the post-processing module
which does the required post process required by the model. Post-processed output is given to HW mosaic
plugin which positions and resizes the output window on an empty background before sending to display.

GStreamer input pipeline:

240 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

rtspsrc location=rtsp://172.24.145.220:8554/test latency=0 buffer-mode=auto !
↪→ rtph264depay ! h264parse ! v4l2h264dec ! video/x-raw, format=NV12 !
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 2.122: GStreamer based data-flow pipeline with RTSP based video file source and display

RPiV2 Camera Sensor (IMX219) In this demo, raw frames in SRGGB8 format are captured form RPiV2
(imx219) camera sensor. VISS (Vision Imaging Subsystem) is used to process the raw frames and get the
output in NV12, VISS also cotrols the sensor parameters like exposure, gain etc.. via v4l2 ioctls. The NV12
output is split into two paths. The “analytics” path resizes the input to match the resolution required to run
the deep learning network. The “visualization” path is provided to the post-processing module which does
the required post process required by the model. Post-processed output is given to HW mosaic plugin which
positions and resizes the output window on an empty background before sending to display.

GStreamer input pipeline:

2.5. BeagleBone AI-64 241

BeagleBoard Docs, Release 1.0.20230308-wip

v4l2src device=/dev/video2 io-mode=5 ! video/x-bayer, width=1920,␣
↪→height=1080, format=rggb ! tiovxisp device=/dev/v4l-subdev2 dcc-isp-file=/
↪→opt/imaging/imx219/dcc_viss.bin dcc-2a-file=/opt/imaging/imx219/dcc_2a.bin␣
↪→format-msb=7 ! video/x-raw, format=NV12 ! tiovxmultiscaler ! video/x-raw,␣
↪→width=1280, height=720 ! tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 2.123: GStreamer based data-flow pipeline with IMX219 sensor, ISP and display

IMX390 Camera Sensor In this demo, raw frames in SRGGB12 format are captured from IMX390 camera
sensor. VISS (Vision Imaging Subsystem) is used to process the raw frames and get the output in NV12, VISS
also controls the sensor parameters like exposure, gain etc.. via v4l2 ioctls. This is followed by LDC (Lens
Distortion Correction) required due to the fisheye lens. The NV12 output is split into two paths. The “analytics”
path resizes the input to match the resolution required to run the deep learning network. The “visualization”
path is provided to the post-processing module which does the required post process required by the model.
Post-processed output is given to HWmosaic plugin which positions and resizes the output window on an empty

242 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

background before sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video18 ! queue leaky=2 ! video/x-bayer, width=1936,␣
↪→height=1100, format=rggb12 ! tiovxisp sink_0::device=/dev/v4l-subdev7␣
↪→sensor-name=IMX390-UB953_D3 dcc-isp-file=/opt/imaging/imx390/dcc_viss.bin␣
↪→sink_0::dcc-2a-file=/opt/imaging/imx390/dcc_2a.bin format-msb=11 ! video/x-
↪→raw, format=NV12 ! tiovxldc dcc-file=/opt/imaging/imx390/dcc_ldc.bin␣
↪→sensor-name=IMX390-UB953_D3 ! video/x-raw, format=NV12, width=1920,␣
↪→height=1080 !tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-
↪→type=3 target=0 channel-order=0 tensor-format=bgr out-pool-size=4 !␣
↪→application/x-tensor-tiovx ! appsink name=pre_0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
tiovxmosaic name=mosaic_0 background=/tmp/background_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Fig. 2.124: GStreamer based data-flow pipeline with IMX390 sensor, ISP, LDC and display

Video output In this demo, a frame is grabbed from an input source and split into two paths. The “analytics”
path resizes the input to match the resolution required to run the deep learning network. The “visualization”
path is provided to the post-processing module which does the required post process required by the model.
Post-processed output is given to HWmosaic plugin which positions and resizes the output window on an empty
background. Finally the video is encoded using the H.264 HW encoder and written to a video file.

GStreamer input pipeline:

2.5. BeagleBone AI-64 243

BeagleBoard Docs, Release 1.0.20230308-wip

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 !␣
↪→tiovxmultiscaler name=split_01
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=1280, height=720 !␣
↪→tiovxdlcolorconvert target=1 out-pool-size=4 ! video/x-raw, format=RGB !␣
↪→appsink name=sen_0 max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1280,␣
↪→height=720 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=1280 sink_
↪→0::height=720
! video/x-raw,format=NV12, width=1920, height=1080 ! v4l2h264enc␣
↪→bitrate=10000000 ! h264parse ! matroskamux ! filesink location=/opt/edge_
↪→ai_apps/data/output/videos/output_video.mkv

Fig. 2.125: GStreamer based data-flow pipeline with video file input source and display

Single Input Multi inference In this demo, a frame is grabbed from an input source and split into multiple
paths. Each path is further split into two sub-paths one for analytics and another for visualization. Each path
can run any type of network, image classification, object detection, semantic segmentation and using any
supported run-time.

For example the below GStreamer pipeline splits the input into 4 paths for running 4 deep learning networks.
First is a semantic segmentation network, followed by object detection network, followed by two image classifi-
cation networks. If we look at the image classification path, the analytics sub-path resizes the input to maintain
the aspect ratio and crops the input to match the resolution required to run the deep learning network. The

244 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

visualization sub-path is provided to the post-processing module which overlays the detected classes. Post-
processed output from all the 4 paths is given to HW mosaic plugin which positions and resizes the output
windows on an empty background before sending to display.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 ! tee name=tee_
↪→split0
tee_split0. ! queue ! tiovxmultiscaler name=split_01
tee_split0. ! queue ! tiovxmultiscaler name=split_02
tee_split0. ! queue ! tiovxmultiscaler name=split_03
tee_split0. ! queue ! tiovxmultiscaler name=split_04
split_01. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-
↪→type=10 channel-order=0 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.015625 scale-1=0.015625 scale-2=0.015625 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_0␣
↪→max-buffers=2 drop=true
split_02. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→1 max-buffers=2 drop=true
split_02. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_1␣
↪→max-buffers=2 drop=true
split_03. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert␣
↪→out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115␣
↪→top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=1 mean-0=128.
↪→000000 mean-1=128.000000 mean-2=128.000000 scale-0=0.007812 scale-1=0.
↪→007812 scale-2=0.007812 tensor-format=rgb out-pool-size=4 ! application/x-
↪→tensor-tiovx ! appsink name=pre_2 max-buffers=2 drop=true
split_03. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_2␣
↪→max-buffers=2 drop=true
split_04. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert␣
↪→out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115␣
↪→top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=0 mean-0=123.
↪→675000 mean-1=116.280000 mean-2=103.530000 scale-0=0.017125 scale-1=0.
↪→017507 scale-2=0.017429 tensor-format=rgb out-pool-size=4 ! application/x-
↪→tensor-tiovx ! appsink name=pre_3 max-buffers=2 drop=true
split_04. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_3␣
↪→max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_1 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_1
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_2 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_2
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_3 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_3
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣

(continues on next page)

2.5. BeagleBone AI-64 245

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=640 sink_
↪→0::height=360
sink_1::startx=960 sink_1::starty=180 sink_1::width=640 sink_
↪→1::height=360
sink_2::startx=320 sink_2::starty=560 sink_2::width=640 sink_
↪→2::height=360
sink_3::startx=960 sink_3::starty=560 sink_3::width=640 sink_
↪→3::height=360
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Multi Input Multi inference In this demo, a frame is grabbed from multiple input sources and split into
multiple paths. The multiple input sources could be either multiple cameras or a combination of camera, video,
image, RTSP source. Each path is further split into two sub-paths one for analytics and another for visualization.
Each path can run any type of network, image classification, object detection, semantic segmentation and using
any supported run-time.

For example the below GStreamer pipeline splits two inputs into 4 paths for running 2 deep learning networks.
First is a object detection network, followed by image classification networks. If we look at the image classifi-
cation path, the analytics sub-path resizes the input to maintain the aspect ratio and crops the input to match
the resolution required to run the deep learning network. The visualization sub-path is provided to the post-
processing module which overlays the detected classes. Post-processed output from all the 4 paths is given to
HW mosaic plugin which positions and resizes the output windows on an empty background before sending to
display.

GStreamer input pipeline:

v4l2src device=/dev/video18 io-mode=2 ! image/jpeg, width=1280, height=720 !␣
↪→jpegdec ! tiovxdlcolorconvert ! video/x-raw, format=NV12 ! tee name=tee_
↪→split0
tee_split0. ! queue ! tiovxmultiscaler name=split_01
tee_split0. ! queue ! tiovxmultiscaler name=split_02
split_01. ! queue ! video/x-raw, width=320, height=320 ! tiovxdlpreproc data-
↪→type=10 channel-order=1 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.007812 scale-1=0.007812 scale-2=0.007812 tensor-
↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→0 max-buffers=2 drop=true
split_01. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_0␣
↪→max-buffers=2 drop=true
split_02. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert␣
↪→out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115␣
↪→top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=1 mean-0=128.
↪→000000 mean-1=128.000000 mean-2=128.000000 scale-0=0.007812 scale-1=0.
↪→007812 scale-2=0.007812 tensor-format=rgb out-pool-size=4 ! application/x-
↪→tensor-tiovx ! appsink name=pre_1 max-buffers=2 drop=true
split_02. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_1␣
↪→max-buffers=2 drop=true

filesrc location=/opt/edge_ai_apps/data/videos/video_0000_h264.mp4 ! qtdemux␣
↪→! h264parse ! v4l2h264dec ! video/x-raw, format=NV12 ! tee name=tee_split1
tee_split1. ! queue ! tiovxmultiscaler name=split_11
tee_split1. ! queue ! tiovxmultiscaler name=split_12
split_11. ! queue ! video/x-raw, width=512, height=512 ! tiovxdlpreproc data-
↪→type=10 channel-order=0 mean-0=128.000000 mean-1=128.000000 mean-2=128.
↪→000000 scale-0=0.015625 scale-1=0.015625 scale-2=0.015625 tensor-

(continues on next page)

246 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

↪→format=rgb out-pool-size=4 ! application/x-tensor-tiovx ! appsink name=pre_
↪→2 max-buffers=2 drop=true
split_11. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_2␣
↪→max-buffers=2 drop=true
split_12. ! queue ! video/x-raw, width=454, height=256 ! tiovxdlcolorconvert␣
↪→out-pool-size=4 ! video/x-raw, format=RGB ! videobox left=115 right=115␣
↪→top=16 bottom=16 ! tiovxdlpreproc data-type=10 channel-order=0 mean-0=123.
↪→675000 mean-1=116.280000 mean-2=103.530000 scale-0=0.017125 scale-1=0.
↪→017507 scale-2=0.017429 tensor-format=rgb out-pool-size=4 ! application/x-
↪→tensor-tiovx ! appsink name=pre_3 max-buffers=2 drop=true
split_12. ! queue ! video/x-raw, width=640, height=360 ! tiovxdlcolorconvert␣
↪→target=1 out-pool-size=4 ! video/x-raw, format=RGB ! appsink name=sen_3␣
↪→max-buffers=2 drop=true

GStreamer output pipeline:

appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_0 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_0
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_1 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_1
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_2 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_2
appsrc format=GST_FORMAT_TIME is-live=true block=true do-timestamp=true␣
↪→name=post_3 ! tiovxdlcolorconvert ! video/x-raw,format=NV12, width=640,␣
↪→height=360 ! queue ! mosaic_0.sink_3
appsrc format=GST_FORMAT_TIME block=true num-buffers=1 name=background_0 !␣
↪→tiovxdlcolorconvert ! video/x-raw,format=NV12, width=1920, height=1080 !␣
↪→queue ! mosaic_0.background
tiovxmosaic name=mosaic_0
sink_0::startx=320 sink_0::starty=180 sink_0::width=640 sink_
↪→0::height=360
sink_1::startx=960 sink_1::starty=180 sink_1::width=640 sink_
↪→1::height=360
sink_2::startx=320 sink_2::starty=560 sink_2::width=640 sink_
↪→2::height=360
sink_3::startx=960 sink_3::starty=560 sink_3::width=640 sink_
↪→3::height=360
! video/x-raw,format=NV12, width=1920, height=1080 ! kmssink sync=false␣
↪→driver-name=tidss

Performance Visualization Tool

The performance visualization tool can be used to view all the performance statistics recorded when running the
edge AI C++ demo application. This includes the CPU and HWA loading, DDR bandwidth, Junction Temperatures
and FPS obtained. Refer to pub_edgeai_available_statistics for details on the performance metrics available to
be plotted.

This tool works as follows:

• Logging: When running the application, the performance statistics can be recorded and stored in log
files. This is done automatically when running the C++ application, but the Python application does not
generate logs. However a standalone binary executable is provided that can be run in parallel with the
Python application, which will generate these performance logs.

• Visualization: There is a Python script which parses these logs and plots graphs, which can be easily
viewed by a visiting a URL in any browser. This script uses Streamlit package to update the graphs in
real-time, as the Edge AI application runs in parallel. However, since Streamlit is not supported in the

2.5. BeagleBone AI-64 247

BeagleBoard Docs, Release 1.0.20230308-wip

SDK out of box, this script needs to run on docker. Please refer to pub_edgeai_docker_env for building
and running a docker container.

Generating Performance Logs

Each log file contains real-time values for some performance metrics, averaged over a 2s window. The temper-
ature sensor values are sampled in real time, every 2s. The performance visualization tool then parses these
log files one by one based on the modification timestamps.

The edge AI C++ demo will automatically generate log files and store them in the directory ../perf_logs,
that is, one level up from where the C++ app is run. For example, if the app is run from edge_ai_apps/
apps_cpp, the logs will be stored in edge_ai_apps/perf_logs.

Similarly, there is a binary executable that can be compiled that does the same logging standalone. The source
for this is available under edge_ai_apps/scripts/perf_stats/. The README.md file has simple
instructions to build and run this standalone logger binary. After building it, use following command to print
the statistics on the terminal as well as save them in log files that can be parsed.

debian@beaglebone:/opt/edge_ai_apps/scripts/perf_stats/build# ../bin/Release/
↪→ti_perfstats -l

Running the Visualization tool

To use this tool, simply start a docker session and then run the command given below. This script expects some
log files to be present in the directory edge_ai_apps/perf_logs after running any C++ demo. One
can also bring up this tool while running the demo but it might affect the performance of the demo itself as it
consumes a bit of ARM cycles during launch but stabilizes over a certain duration.

[docker] debian@beaglebone:/opt/edge_ai_apps# streamlit run scripts/perf_vis.
↪→py --theme.base=”light”

This script also accepts the log directory as a command line argument as follows:

[docker] debian@beaglebone:/opt/edge_ai_apps# streamlit run scripts/perf_vis.
↪→py --theme.base=”light” -- -D <path/to/logs/directory/>

A network URL can be seen in the terminal output. The graphs can be viewed by visiting this URL in any
browser. The plotted graphs will keep updating based on the available log files.

To exit press Ctrl+C in the terminal.

Available options Average frames per second (FPS) recorded by the application is displayed by default.
Using the checkboxes in the sidebar, one can select which performance metrics to view. There are 14 metrics
available to be plotted, as seen from the above image:

• CPU Load: Total loading for the A72(mpu1_0), R5F(mcu2_0/1), C66x(c6x_1/2) and C71x(c7x_1) DSPs.

• HWA Load: Loading (percentage) for the various available hardware accelerators.

• DDR Bandwidth: Average read, write and total bandwidth recorded in the previous 2s interval.

• Junction Temperatures: The live temperatures recorded at various junctions

• Task Table: A separate graph for each cpu showing the loading due to various tasks running on it.

• Heap Table: A separate graph for each cpu showing the heap memory usage statistics.

For the first three metrics, there is a choice to view line graphs with a 30s history or bar graphs with only the
real-time values. The remaining eleven have real-time bar graphs as the only option.

248 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.126: Performance visualizer dashboard showing CPU and HWA loading, DDR bandwidth, Junction Tem-
peratures and the FPS obtained

SDK Components

The BeagleBone® AI-64 Linux for Edge AI can be divided into 3 parts, Applications, BeagleBone® AI-64 Linux
and Processor SDK RTOS. Users can get the latest application updates and bug fixes from the public repositories
(GitHub and git.ti.com) which aligns with the SDK releases done quarterly. One can also build every component
from source by following the steps here, pub_edgeai_sdk_development_flow

Fig. 2.127: BeagleBone® AI-64 Linux for Edge AI components

Edge AI Applications The edge AI applications are designed for users to quickly evaluate various Deep
Learning networks on TDA4 SoC. The user can run standalone examples and Jupyter notebook applications to
evaluate inference models either from TI Edge AI Model Zoo or a custom network. Once a network is finalized
for performance and accuracy it can also be easily integrated in a typical capture-inference-display usecase
using example GStreamer based applications for rapid prototyping and deployment.

2.5. BeagleBone AI-64 249

https://github.com/TexasInstruments/edgeai-modelzoo

BeagleBoard Docs, Release 1.0.20230308-wip

edgeai-tidl-tools This application repository provides standalone Python and C/C++ examples to quickly
evaluate inference models using TFLite, ONNX and NeoAI-DLR runtime using file based inputs. It also houses
the Jupyter notebooks similar to TI Edge AI Cloud which can be executed right on the TDA4VM Starter Kit.

For more details on using this application repo please refer to the documentation and source code found here:
https://github.com/TexasInstruments/edgeai-tidl-tools

edgeai-modelzoo This repo provides collection of example Deep Neural Network (DNN) Models for various
computer vision tasks. A few example models are packaged as part of the SDK to run out-of-box demos. More
can be downloaded using a download script made available in the edge_ai_apps repo.

For more details on the pre-imported models and related documentation please visit: https://github.com/
TexasInstruments/edgeai-modelzoo

edge_ai_apps These are plug-and-play Deep Learning applications which support running open source run-
time frameworks such as TFLite, ONNX and NeoAI-DLR with a live camera and display. They help connect
realtime camera, video or RTSP sources to DL inference to live display, bitstream or RTSP sinks.

The latest source code with fixes can be pulled from: https://git.ti.com/cgit/edgeai/edge_ai_apps

edgeai-gst-plugins This repo provides the source of custom GStreamer plugins which helps offload tasks
to TDA4 hardware accelerators and advanced DSPs with the help of edgeai-tiovx-modules. The repo gets
downloaded, built and installed as part of the pub_edgeai_install_dependencies step.

Source code and documentation: https://github.com/TexasInstruments/edgeai-gst-plugins

edgeai-tiovx-modules This repo provides OpenVx modules which help access underlying hardware accel-
erators in the TDA4 SoC and serves as a bridge between GStreamer custom elements and underlying OpenVx
custom kernels. The repo gets downloaded, built and installed as part of the pub_edgeai_install_dependencies
step.

Source code and documentation: https://github.com/TexasInstruments/edgeai-tiovx-modules

Processor SDK RTOS The BeagleBone® AI-64 Linux for Edge AI gets all the HWA drivers, optimized libraries,
OpenVx framework and more from Processor SDK RTOS

For more information visit Processor SDK RTOS Getting Started Guide.

BeagleBone® AI-64 Linux The BeagleBone® AI-64 Linux for Edge AI gets all the Linux kernel, filesystem,
device-drivers and more from BeagleBone® AI-64 Linux

For more information visit BeagleBone® AI-64 Linux Software Developer’s Guide.

Datasheet

This chapter describes the performance measurements of the Edge AI Inference demos.

Performance data of the demos can be auto generated by running following command on target:

debian@beaglebone:/opt/edge_ai_apps/tests# ./gen_data_sheet.sh

The performance measurements includes the following

1. FPS : Effective framerate at which the application runs

2. Total time : Average time taken to process each frame, which includes pre-processing, inference and
post-processing time

3. Inference time : Average time taken to infer each frame

250 Chapter 2. Boards

https://dev.ti.com/edgeai/
https://github.com/TexasInstruments/edgeai-tidl-tools
https://github.com/TexasInstruments/edgeai-modelzoo
https://github.com/TexasInstruments/edgeai-modelzoo
https://git.ti.com/cgit/edgeai/edge_ai_apps
https://github.com/TexasInstruments/edgeai-gst-plugins
https://github.com/TexasInstruments/edgeai-tiovx-modules
https://software-dl.ti.com/processor-sdk-rtos/esd/docs/latest/rtos/index_overview.html
https://software-dl.ti.com/jacinto7/esd/processor-sdk-linux-jacinto7/08_02_00_03/exports/docs/devices/J7/linux/index.html

BeagleBoard Docs, Release 1.0.20230308-wip

4. CPU loading : Loading on different CPU cores present

5. DDR BW : DDR read and write BW used

6. HWA Loading : Loading on different Hardware accelerators present

Following are the latest performance numbers of the C++ demos:

Source : USB Camera Capture Framerate : 30 fps Resolution : 720p format : JPEG

Fig. 2.128: GStreamer based data-flow pipeline with USB camera input and display output

ModelFPS To-
tal
time
(ms)

In-
fer-
ence
time
(ms)

A72
Load
(%)

DDR
Read
BW
(MB/s)

DDR
Write
BW
(MB/s)

DDR
To-
tal
BW
(MB/s)

C71
Load
(%)

C66_1
Load
(%)

C66_2
Load
(%)

MCU2_0
Load
(%)

MCU2_1
Load
(%)

MSC_0
(%)

MSC_1
(%)

VISS
(%)

NF
(%)

LDC
(%)

SDE
(%)

DOF
(%)

ONR-
CL-
6150-
mobileNetV2-
1p4-
qat

30.80 33.22 3.02 21.60 1596 619 2215 9.0 20.0 9.0 6.0 1.0 22.17 0 0 0 0 0 0

TFL-
CL-
0000-
mobileNetV1-
mlperf

30.69 33.19 1.04 15.93 1425 563 1988 5.0 22.0 9.0 6.0 1.0 21.90 0 0 0 0 0 0

TFL-
OD-
2020-
ssdLite-
mobDet-
DSP-
coco-
320x320

30.69 33.25 5.00 10.24 1534 570 2104 15.0 29.0 9.0 6.0 1.0 22.67 0 0 0 0 0 0

TVM-
CL-
3410-
gluoncv-
mxnet-
mobv2

30.58 33.21 2.02 22.80 1522 617 2139 6.0 20.0 9.0 6.0 1.0 21.84 0 0 0 0 0 0

2.5. BeagleBone AI-64 251

BeagleBoard Docs, Release 1.0.20230308-wip

Source : Video Video Framerate : 30 fps Resolution : 720p Encoding : h264

Fig. 2.129: GStreamer based data-flow pipeline with video file input source and display output

ModelFPS To-
tal
time
(ms)

In-
fer-
ence
time
(ms)

A72
Load
(%)

DDR
Read
BW
(MB/s)

DDR
Write
BW
(MB/s)

DDR
To-
tal
BW
(MB/s)

C71
Load
(%)

C66_1
Load
(%)

C66_2
Load
(%)

MCU2_0
Load
(%)

MCU2_1
Load
(%)

MSC_0
(%)

MSC_1
(%)

VISS
(%)

NF
(%)

LDC
(%)

SDE
(%)

DOF
(%)

ONR-
CL-
6150-
mobileNetV2-
1p4-
qat

30.52 33.46 3.03 14.28 990 403 1393 2.0 7.0 4.0 1.0 1.0 10.27 0 0 0 0 0 0

TFL-
CL-
0000-
mobileNetV1-
mlperf

30.77 33.47 1.07 30.76 746 97 843 2.0 2.0 1.0 1.0 1.0 15.76 0 0 0 0 0 0

TFL-
OD-
2020-
ssdLite-
mobDet-
DSP-
coco-
320x320

30.56 33.54 5.06 22.58 736 92 828 2.0 2.0 1.0 1.0 1.0 16.9 0 0 0 0 0 0

TVM-
CL-
3410-
gluoncv-
mxnet-
mobv2

30.64 33.47 2.01 33.33 712 110 822 1.0 1.0 0.0 1.0 1.0 15.3 0 0 0 0 0 0

Source : CSI Camera (ov5640) Capture Framerate : 30 fps Resolution : 720p format : YUYV

252 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.130: GStreamer based data-flow pipeline for with CSI camera (OV5640) input and display output

ModelFPS To-
tal
time
(ms)

In-
fer-
ence
time
(ms)

A72
Load
(%)

DDR
Read
BW
(MB/s)

DDR
Write
BW
(MB/s)

DDR
To-
tal
BW
(MB/s)

C71
Load
(%)

C66_1
Load
(%)

C66_2
Load
(%)

MCU2_0
Load
(%)

MCU2_1
Load
(%)

MSC_0
(%)

MSC_1
(%)

VISS
(%)

NF
(%)

LDC
(%)

SDE
(%)

DOF
(%)

ONR-
CL-
6150-
mobileNetV2-
1p4-
qat

29.57 34.09 3.02 12.21 1671 699 2370 8.0 45.0 9.0 6.0 1.0 21.35 0 0 0 0 0 0

TFL-
CL-
0000-
mobileNetV1-
mlperf

29.41 34.15 1.01 10.27 1502 645 2147 5.0 47.0 9.0 6.0 1.0 20.96 0 0 0 0 0 0

TFL-
OD-
2020-
ssdLite-
mobDet-
DSP-
coco-
320x320

29.36 34.65 5.00 10.5 1610 655 2265 14.0 53.0 9.0 6.0 1.0 21.47 0 0 0 0 0 0

TVM-
CL-
3410-
gluoncv-
mxnet-
mobv2

29.38 34.17 2.01 11.66 1596 698 2294 6.0 45.0 9.0 5.0 1.0 21.10 0 0 0 0 0 0

Source : CSI Camera with VISS (imx219) Capture Framerate : 30 fps Resolution : 1080p format :
SRGGB8

2.5. BeagleBone AI-64 253

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.131: GStreamer based data-flow pipeline with IMX219 sensor, ISP and display

ModelFPS To-
tal
time
(ms)

In-
fer-
ence
time
(ms)

A72
Load
(%)

DDR
Read
BW
(MB/s)

DDR
Write
BW
(MB/s)

DDR
To-
tal
BW
(MB/s)

C71
Load
(%)

C66_1
Load
(%)

C66_2
Load
(%)

MCU2_0
Load
(%)

MCU2_1
Load
(%)

MSC_0
(%)

MSC_1
(%)

VISS
(%)

NF
(%)

LDC
(%)

SDE
(%)

DOF
(%)

ONR-
CL-
6150-
mobileNetV2-
1p4-
qat

30.64 33.19 3.01 15.72 1781 853 2634 9.0 16.0 9.0 13.0 1.0 31.78 0 22.37 0 0 0 0

TFL-
CL-
0000-
mobileNetV1-
mlperf

30.59 33.14 1.04 12.78 1612 798 2410 5.0 18.0 9.0 13.0 1.0 31.65 0 22.31 0 0 0 0

TFL-
OD-
2020-
ssdLite-
mobDet-
DSP-
coco-
320x320

30.56 33.07 5.00 13.30 1730 809 2539 15.0 25.0 9.0 13.0 1.0 32.6 0 22.19 0 0 0 0

TVM-
CL-
3410-
gluoncv-
mxnet-
mobv2

30.48 33.14 2.01 12.91 1708 852 2560 7.0 16.0 9.0 13.0 1.0 31.83 0 22.26 0 0 0 0

Source : IMX390 over FPD-Link Capture Framerate : 30 fps Resolution : 1080p format : SRGGB12

254 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.132: GStreamer based data-flow pipeline with IMX390 sensor, ISP, LDC and display

ModelFPS To-
tal
time
(ms)

In-
fer-
ence
time
(ms)

A72
Load
(%)

DDR
Read
BW
(MB/s)

DDR
Write
BW
(MB/s)

DDR
To-
tal
BW
(MB/s)

C71
Load
(%)

C66_1
Load
(%)

C66_2
Load
(%)

MCU2_0
Load
(%)

MCU2_1
Load
(%)

MSC_0
(%)

MSC_1
(%)

VISS
(%)

NF
(%)

LDC
(%)

SDE
(%)

DOF
(%)

ONR-
CL-
6150-
mobileNetV2-
1p4-
qat

30.59 33.15 3.09 25.18 2207 1102 3309 10.0 16.0 9.0 14.0 1.0 31.73 0 22.94 0 10.8 0 0

TFL-
CL-
0000-
mobileNetV1-
mlperf

30.53 33.15 1.21 16.20 2019 1040 3059 5.0 18.0 9.0 15.0 1.0 32.80 0 23.34 0 10.10 0 0

TFL-
OD-
2020-
ssdLite-
mobDet-
DSP-
coco-
320x320

30.43 33.13 5.02 23.7 2201 1067 3268 15.0 25.0 9.0 14.0 1.0 32.80 0 22.88 0 9.95 0

TVM-
CL-
3410-
gluoncv-
mxnet-
mobv2

30.44 33.16 2.12 21.50 2111 1100 3211 7.0 16.0 9.0 15.0 1.0 32.28 0 22.88 0 10.6 0 0

Test Report

Here is the summary of the sanity tests we ran with both Python and C++ demos. Test cases vary with different
inputs, outputs, runtime, models, python/c++ apps.

1. Inputs:

• Camera (Logitech C270, 1280x720, JPEG)

2.5. BeagleBone AI-64 255

BeagleBoard Docs, Release 1.0.20230308-wip

• Camera (Omnivision OV5640, 1280x720, YUV)

• Camera (Rpi v2 Sony IMX219, 1920x1080, RAW)

• Image files (30 images under edge_ai_apps/data/images)

• Video file (10s video 1 file under edge_ai_apps/data/videos)

• RSTP Video Server

2. Outputs:

• Display (eDP or HDMI)

• File write to SD card

3. Inference Type:

• Image classification

• Object detection

• Semantic segmentation

4. Runtime/models:

• DLR

• TFLite

• ONNX

5. Applications:

• Python

• C++

6. Platform:

• Host OS

• Docker

Demo Apps test report

Single Input Single Output
Category # test case Pass Fail
Host OS - Python 99 99 0
Host OS - C++ 99 99 0

S.No Models Input Output Host OS-C++ Host OS-Python Docker-C++ Docker-Python Comments
1 TVM-CL-3410-gluoncv-mxnet-mobv2 Image Display Pass Pass Pass Pass
2 TVM-CL-3410-gluoncv-mxnet-mobv2 Image Video-Filewrite Fail Fail Fail Fail
3 TVM-CL-3410-gluoncv-mxnet-mobv2 Image Image-Filewrite Pass Pass Pass Pass
4 TVM-CL-3410-gluoncv-mxnet-mobv2 Video Display Pass Pass Pass Pass
5 TVM-CL-3410-gluoncv-mxnet-mobv2 Video Video-Filewrite Pass Pass Pass Pass
6 TVM-CL-3410-gluoncv-mxnet-mobv2 USB Camera Display Pass Pass Pass Pass
7 TVM-CL-3410-gluoncv-mxnet-mobv2 USB Camera Video-Filewrite Pass Pass Pass Pass
8 TVM-CL-3410-gluoncv-mxnet-mobv2 CSI Camera Display Pass Pass Pass Pass
9 TVM-CL-3410-gluoncv-mxnet-mobv2 CSI Camera Video-Filewrite Pass Pass Pass Pass
10 TVM-CL-3410-gluoncv-mxnet-mobv2 RPI Camera Display Pass Pass Pass Pass
11 TVM-CL-3410-gluoncv-mxnet-mobv2 RPI Camera Video-Filewrite Pass Pass Pass Pass
12 TVM-CL-3410-gluoncv-mxnet-mobv2 RTSP - Video Display Pass Pass Pass Pass
13 TVM-CL-3410-gluoncv-mxnet-mobv2 RTSP - Video Video-Filewrite Pass Pass Pass Pass

continues on next page

256 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.54 – continued from previous page
S.No Models Input Output Host OS-C++ Host OS-Python Docker-C++ Docker-Python Comments
14 TFL-CL-0000-mobileNetV1-mlperf Image Display Pass Pass Pass Pass
15 TFL-CL-0000-mobileNetV1-mlperf Image Video-Filewrite Fail Fail Fail Fail
16 TFL-CL-0000-mobileNetV1-mlperf Image Image-Filewrite Pass Pass Pass Pass
17 TFL-CL-0000-mobileNetV1-mlperf Video Display Pass Pass Pass Pass
18 TFL-CL-0000-mobileNetV1-mlperf Video Video-Filewrite Pass Pass Pass Pass
19 TFL-CL-0000-mobileNetV1-mlperf USB Camera Display Pass Pass Pass Pass
20 TFL-CL-0000-mobileNetV1-mlperf USB Camera Video-Filewrite Pass Pass Pass Pass
21 TFL-CL-0000-mobileNetV1-mlperf CSI Camera Display Pass Pass Pass Pass
22 TFL-CL-0000-mobileNetV1-mlperf CSI Camera Video-Filewrite Pass Pass Pass Pass
23 TFL-CL-0000-mobileNetV1-mlperf RPI Camera Display Pass Pass Pass Pass
24 TFL-CL-0000-mobileNetV1-mlperf RPI Camera Video-Filewrite Pass Pass Pass Pass
25 TFL-CL-0000-mobileNetV1-mlperf RTSP - Video Display Pass Pass Pass Pass
26 TFL-CL-0000-mobileNetV1-mlperf RTSP - Video Video-Filewrite Pass Pass Pass Pass
27 ONR-CL-6360-regNetx-200mf Image Display Pass Pass Pass Pass
28 ONR-CL-6360-regNetx-200mf Image Video-Filewrite Fail Fail Fail Fail
29 ONR-CL-6360-regNetx-200mf Image Image-Filewrite Pass Pass Pass Pass
30 ONR-CL-6360-regNetx-200mf Video Display Pass Pass Pass Pass
31 ONR-CL-6360-regNetx-200mf Video Video-Filewrite Pass Pass Pass Pass
32 ONR-CL-6360-regNetx-200mf USB Camera Display Pass Pass Pass Pass
33 ONR-CL-6360-regNetx-200mf USB Camera Video-Filewrite Pass Pass Pass Pass
34 ONR-CL-6360-regNetx-200mf CSI Camera Display Pass Pass Pass Pass
35 ONR-CL-6360-regNetx-200mf CSI Camera Video-Filewrite Pass Pass Pass Pass
36 ONR-CL-6360-regNetx-200mf RPI Camera Display Pass Pass Pass Pass
37 ONR-CL-6360-regNetx-200mf RPI Camera Video-Filewrite Pass Pass Pass Pass
38 ONR-CL-6360-regNetx-200mf RTSP - Video Display Pass Pass Pass Pass
39 ONR-CL-6360-regNetx-200mf RTSP - Video Video-Filewrite Pass Pass Pass Pass
40 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Image Display Pass Pass Pass Pass
41 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Image Video-Filewrite Fail Fail Fail Fail
42 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Image Image-Filewrite Pass Pass Pass Pass
43 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Video Display Pass Pass Pass Pass
44 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 Video Video-Filewrite Pass Pass Pass Pass
45 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 USB Camera Display Pass Pass Pass Pass
46 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 USB Camera Video-Filewrite Pass Pass Pass Pass
47 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 CSI Camera Display Pass Pass Pass Pass
48 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 CSI Camera Video-Filewrite Pass Pass Pass Pass
49 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RPI Camera Display Pass Pass Pass Pass
50 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RPI Camera Video-Filewrite Pass Pass Pass Pass
51 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RTSP - Video Display Pass Pass Pass Pass
52 TVM-OD-5020-yolov3-mobv1-gluon-mxnet-coco-416x416 RTSP - Video Video-Filewrite Pass Pass Pass Pass
53 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Image Display Pass Pass Pass Pass
54 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Image Video-Filewrite Fail Fail Fail Fail
55 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Image Image-Filewrite Pass Pass Pass Pass
56 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Video Display Pass Pass Pass Pass
57 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 Video Video-Filewrite Pass Pass Pass Pass
58 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 USB Camera Display Pass Pass Pass Pass
59 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 USB Camera Video-Filewrite Pass Pass Pass Pass
60 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 CSI Camera Display Pass Pass Pass Pass
61 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 CSI Camera Video-Filewrite Pass Pass Pass Pass
62 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RPI Camera Display Pass Pass Pass Pass
63 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RPI Camera Video-Filewrite Pass Pass Pass Pass
64 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RTSP - Video Display Pass Pass Pass Pass
65 TFL-OD-2020-ssdLite-mobDet-DSP-coco-320x320 RTSP - Video Video-Filewrite Pass Pass Pass Pass
66 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 Image Display Pass Pass Pass Pass

continues on next page

2.5. BeagleBone AI-64 257

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.54 – continued from previous page
S.No Models Input Output Host OS-C++ Host OS-Python Docker-C++ Docker-Python Comments
67 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 Image Video-Filewrite Fail Fail Fail Fail
68 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 Image Image-Filewrite Pass Pass Pass Pass
69 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 Video Display Pass Pass Pass Pass
70 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 Video Video-Filewrite Pass Pass Pass Pass
71 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 USB Camera Display Pass Pass Pass Pass
72 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 USB Camera Video-Filewrite Pass Pass Pass Pass
73 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 CSI Camera Display Pass Pass Pass Pass
74 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 CSI Camera Video-Filewrite Pass Pass Pass Pass
75 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 RPI Camera Display Pass Pass Pass Pass
76 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 RPI Camera Video-Filewrite Pass Pass Pass Pass
77 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 RTSP - Video Display Pass Pass Pass Pass
78 ONR-OD-8050-ssd-lite-regNetX-800mf-fpn-bgr-mmdet-coco-512x512 RTSP - Video Video-Filewrite Pass Pass Pass Pass
79 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Image Display Pass Pass Pass Pass
80 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Image Video-Filewrite Fail Fail Fail Fail
81 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Image Image-Filewrite Pass Pass Pass Pass
82 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Video Display Pass Pass Pass Pass
83 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 Video Video-Filewrite Pass Pass Pass Pass
84 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 USB Camera Display Pass Pass Pass Pass
85 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 USB Camera Video-Filewrite Pass Pass Pass Pass
86 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 CSI Camera Display Pass Pass Pass Pass
87 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 CSI Camera Video-Filewrite Pass Pass Pass Pass
88 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RPI Camera Display Pass Pass Pass Pass
89 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RPI Camera Video-Filewrite Pass Pass Pass Pass
90 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RTSP - Video Display Pass Pass Pass Pass
91 TVM-SS-5720-deeplabv3lite-regnetx800mf-cocoseg21-512x512 RTSP - Video Video-Filewrite Pass Pass Pass Pass
92 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Image Display Pass Pass Pass Pass
93 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Image Video-Filewrite Fail Fail Fail Fail
94 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Image Image-Filewrite Pass Pass Pass Pass
95 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Video Display Pass Pass Pass Pass
96 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 Video Video-Filewrite Pass Pass Pass Pass
97 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 USB Camera Display Pass Pass Pass Pass
98 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 USB Camera Video-Filewrite Pass Pass Pass Pass
99 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 CSI Camera Display Pass Pass Pass Pass
100 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 CSI Camera Video-Filewrite Pass Pass Pass Pass
101 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RPI Camera Display Pass Pass Pass Pass
102 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RPI Camera Video-Filewrite Pass Pass Pass Pass
103 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RTSP - Video Display Pass Pass Pass Pass
104 TFL-SS-2580-deeplabv3_mobv2-ade20k32-mlperf-512x512 RTSP - Video Video-Filewrite Pass Pass Pass Pass
105 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Image Display Pass Pass Pass Pass
106 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Image Video-Filewrite Fail Fail Fail Fail
107 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Image Image-Filewrite Pass Pass Pass Pass
108 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Video Display Pass Pass Pass Pass
109 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 Video Video-Filewrite Pass Pass Pass Pass
110 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 USB Camera Display Pass Pass Pass Pass
111 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 USB Camera Video-Filewrite Pass Pass Pass Pass
112 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 CSI Camera Display Pass Pass Pass Pass
113 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 CSI Camera Video-Filewrite Pass Pass Pass Pass
114 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 RPI Camera Display Pass Pass Pass Pass
115 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 RPI Camera Video-Filewrite Pass Pass Pass Pass
116 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 RTSP - Video Display Pass Pass Pass Pass
117 ONR-SS-8610-deeplabv3lite-mobv2-ade20k32-512x512 RTSP - Video Video-Filewrite Pass Pass Pass Pass

258 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Single Input Multi Output
Category # test case Pass Fail
Host OS - Python 15 15 0
docker - Python 15 15 0
Host OS - C++ 15 15 0
Docker - C++ 15 15 0

S.No Models Input Out-
put

Host OS-
C++

Host OS-
Python

Docker-
C++

Docker-
Python

Com-
ments

1 2 Models (TFL-CL, ONR-SS) %04d.jpg Dis-
play

Pass Pass Pass Pass

2 3-Models (TVM-CL, TFL-OD,
ONR-SS)

%04d.jpg Dis-
play

Pass Pass Pass Pass

3 4-Models (TVM-SS, TFL-OD,
ONR-SS, ONR-CL)

%04d.jpg Dis-
play

Pass Pass Pass Pass

4 2 Models (TFL-CL, ONR-SS) video_0000.mp4Dis-
play

Pass Pass Pass Pass

5 3-Models (TVM-CL, TFL-OD,
ONR-SS)

video_0000.mp4Dis-
play

Pass Pass Pass Pass

6 4-Models (TVM-SS, TFL-OD,
ONR-SS, ONR-CL)

video_0000.mp4Dis-
play

Pass Pass Pass Pass

7 2 Models (TFL-CL, ONR-SS) USB_camera Dis-
play

Pass Pass Pass Pass

8 3-Models (TVM-CL, TFL-OD,
ONR-SS)

USB_camera Dis-
play

Pass Pass Pass Pass

9 4-Models (TVM-SS, TFL-OD,
ONR-SS, ONR-CL)

USB_camera Dis-
play

Pass Pass Pass Pass

10 2 Models (TFL-CL, ONR-SS) CSI_camera Dis-
play

Pass Pass Pass Pass

11 3-Models (TVM-CL, TFL-OD,
ONR-SS)

CSI_camera Dis-
play

Pass Pass Pass Pass

12 4-Models (TVM-SS, TFL-OD,
ONR-SS, ONR-CL)

CSI_camera Dis-
play

Pass Pass Pass Pass

13 2 Models (TFL-CL, ONR-SS) rtsp Dis-
play

Pass Pass Pass Pass

14 3-Models (TVM-CL, TFL-OD,
ONR-SS)

rtsp Dis-
play

Pass Pass Pass Pass

15 4-Models (TVM-SS, TFL-OD,
ONR-SS, ONR-CL)

rtsp Dis-
play

Pass Pass Pass Pass

Multi Input Multi Output
Category # test case Pass Fail
Host OS - Python 8 8 0
docker - Python 8 8 0
Host OS - C++ 8 8 0
Docker - C++ 8 8 0

S.No Models Input Output Host
OS-
C++

Host OS-
Python

Docker-
C++

Docker-
Python

Com-
ments

1 2 Models (TVM-CL, TFL-
OD)

%04d.jpg,video_0000.mp4 Display Pass Pass Pass Pass

2 2 Models (TVM-OD, ONR-
SS)

%04d.jpg,rtsp Video-
Filewrite

Pass Pass Pass Pass

3 2 Models (ONR-CL, TVM-
SS)

%04d.jpg,USB_camera Display Pass Pass Pass Pass

4 3-Models (TVM-CL, TFL-
OD, ONR-SS)

%04d.jpg,CSI_camera,rtsp Video-
Filewrite

Pass Pass Pass Pass

5 3-Models (TVM-CL, TFL-
OD, ONR-SS)

video_0000.mp4,rtsp,%04d.jpgDisplay Pass Pass Pass Pass

6 3-Models (TFL-CL, ONR-
CL, TVM-SS)

video_0000.mp4,USB_camera,CSI_cameraVideo-
Filewrite

Pass Pass Pass Pass

7 4-Models (TVM-CL, TFL-
SS, ONR-OD, TFL-CL)

USB_camera,CSI_camera Display Pass Pass Pass Pass

8 4-Models (TVM-SS, TFL-
SS, ONR-SS, ONR-OD)

USB_camera,video_0000.mp4Video-
Filewrite

Pass Pass Pass Pass

2.5. BeagleBone AI-64 259

BeagleBoard Docs, Release 1.0.20230308-wip

Note:

• Video file from RTSP server used for RTSP input test

• Please refer to the pub_edgeai_known_issues section for more details

2.6 PocketBeagle

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

• Maintaining author: Jason Kridner

• Contributing Editor: Cathy Wicks

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

PocketBeagle is an ultra-tiny-yet-complete open-source USB-key-fob computer. PocketBeagle features an in-
credible low cost, slick design and simple usage, making PocketBeagle the ideal development board for begin-
ners and professionals alike.

260 Chapter 2. Boards

http://creativecommons.org/licenses/by-sa/4.0/
mailto:jkridner@beagleboard.org
mailto:cathy@beagleboard.org

BeagleBoard Docs, Release 1.0.20230308-wip

2.6.1 Introduction

This document is the System Reference Manual for PocketBeagle and covers its use and design. PocketBea-
gle is an ultra-tiny-yet-complete Linux-enabled, community-supported, open-source USB-key-fob-computer.
PocketBeagle features an incredible low cost, slick design and simple usage, making it the ideal develop-
ment board for beginners and professionals alike. Simply develop directly in a web browser providing you with
a playground for programming and electronics. Exploring is made easy with several available libraries and
tutorials with many more coming.

PocketBeagle will boot directly from a microSD card. Load a Linux distribution onto your card, plug your board
into your computer and get started. PocketBeagle runs GNU.Linux, so you can leverage many different high-
level programming languages and a large body of drivers that prevent you from needing to write a lot of your
own software.

This design will keep improving as the product matures based on feedback and experience. Software updates
will be frequent and will be independent of the hardware revisions and as such not result in a change in the
revision number of the board. A great place to find out the latest news and projects for PocketBeagle is on the
home page beagleboard.org/pocket

Important: Make sure you check the BeagleBoard.org docs repository for the most up to date information.

Fig. 2.133: PocketBeagle Home Page

2.6.2 Change History

This section describes the change history of this document and board. Document changes are not always a
result of a board change. A board change will always result in a document change.

Document Change History

Table 2.55: Change History
Rev Changes Date By
A.x Production Document December 7, 2017 JK
0.0.5 Converted to .rst and gitlab hosting July 21, 2022 DK

Board Changes

Table 2.56: Board History
Rev Changes Date By
A1 Preliminary February 14, 2017 JK
A2 Production. Fixed mikroBUS Click reset pins (made GPIO). September 22, 2017 JK

2.6. PocketBeagle 261

https://beagleboard.org/pocket
https://git.beagleboard.org/docs/docs.beagleboard.io

BeagleBoard Docs, Release 1.0.20230308-wip

PocketBone Upon the creation of the first, 27mm-by-27mm, Octavo Systems OSD3358 SIP, Jason did a hack
two-layer board in EAGLE called “PocketBone” to drop the Beagle name as this was a totally unofficial effort
not geared at being a BeagleBoard.org Foundation project. The board never worked because the 32kHz and
24MHz crystals were backwards and Michael Welling decided to pick it up and redo the design in KiCad as
a four-layer board. Jason paid for some prototypes and this resulted in the first successful “PocketBone”, a
fully-open-source 1-GHz Linux computer in a fitting into a mini-mint tin.

Rev A1 The Rev A1 of PocketBeagle was a prototype not released to production. A few lines were wrong to
be able to control mikroBUS Click add-on board reset lines and they were adjusted.

Rev A2 The Rev A2 of PocketBeagle was released to production and [https://www.prnewswire.com/news-
releases/small-in-size–cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-
professionals-300519950.htmllaunched at World MakerFaire 2017].

Known issues in rev A2:

Issue Link
GPIO44 is incorrectly labelled as GPIO48 github .com/beagleboard/pocketbeagle/is sues/4

2.6.3 Connecting Up PocketBeagle

This section provides instructions on how to hook up your board. The most common scenario is tethering
PocketBeagle to your PC for local development.

What’s In the Package

In the package you will find two items as shown in figures below.

• PocketBeagle

• Getting Started instruction card with link to the support URL.

Connecting the board

This section will describe how to connect to the board. Information can also be found on the Quick Start Guide
that came in the box. Detailed information is also available at beagleboard.org/getting-started

The board can be configured in several different ways, but we will discuss the most common scenario. Future
revisions of this document may include additional configurations.

Tethered to a PC using Debian Images

In this configuration, you will need the following additional items:

• microUSB to USB Type A Cable

• microSD card (>=4GB and <128GB)

The board is powered by the PC via the USB cable, no other cables are required. The board is accessed either
as a USB storage drive or via a web browser on the PC. You need to use either Firefox or Chrome on the PC, IE
will not work properly. Figure below shows this configuration.

In some instances, such as when additional add-on boards, or PocketCapes are connected, the PC may not be
able to supply sufficient power for the full system. In that case, review the power requirements for the add-on
board/cape; additional power may need to be supplied via the 5v input, but rarely is this the case.

262 Chapter 2. Boards

https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://www.prnewswire.com/news-releases/small-in-size--cost-meet-pocketbeagle-the-25-development-board-for-hobbyists-educators-and-professionals-300519950.html
https://github.com/beagleboard/pocketbeagle/issues/4
https://beagleboard.org/getting-started

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.134: PocketBeagle Package

Fig. 2.135: PocketBeagle Package Insert front

2.6. PocketBeagle 263

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.136: PocketBeagle Package Insert back

264 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.137: Tethered Configuration

2.6. PocketBeagle 265

BeagleBoard Docs, Release 1.0.20230308-wip

Getting Started The following steps will guide you to quickly download a PocketBeagle software image onto
your microSD card and get started writing code.

1. Navigate to the Getting Started Page beagleboard.org/getting-started Follow along with the instructions and
click on the link noted in Figure 5 below www.beagleboard.org/distros. You can also get to this page directly by
going to bbb.io/latest

Fig. 2.138: Getting Started Page

1. Download the latest image onto your computer by following the link to the latest image and click on the
Debian image for Stretch IoT (non-GUI) for BeagleBone and PocketBeagle via microSD card. See Figure 6 below.
This will download a .img.xz file into the downloads folder of your computer.

Fig. 2.139: Download Latest Software Image

1. Transfer the image to a microSD card.

Download and install an SD card programming utility if you do not already have one. We like https://etcher.io/
for new users and so we show that one in the steps below. Go to your downloads folder and doubleclick on the
.exe file and follow the on-screen prompts. See figure 7.

Insert a new microSD card into a card reader/writer and attach it via the USB connection to your computer.
Follow the instructions on the screen for selecting the .img file and burning the image from your computer to
the microSD card. Eject the SD card reader when prompted and remove the card. See Figures 8 and 9.

1. Insert the microSD card into the board - you’ll hear a satisfying click when it seats properly into the slot. It
is important that your microSD card is fully inserted prior to powering the system.

1. Connect the micro USB connector on your cable to the board as shown in Figure 11. The microUSB connector
is fairly robust, but we suggest that you not use the cable as a leash for your PocketBeagle. Take proper care
not to put too much stress on the connector or cable.

1. Connect the large connector of the USB cable to your Linux, Mac or Windows PC USB port as shown in Figure
12. The board will power on and the power LED will be on as shown in Figure 13 below.

266 Chapter 2. Boards

https://beagleboard.org/getting-started
https://www.beagleboard.org/distros
https://bbb.io/latest
https://etcher.io/

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.140: Download Etcher SD Card Utility

Fig. 2.141: Select the PocketBeagle Image

Fig. 2.142: Burn the Image to the SD Card

2.6. PocketBeagle 267

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.143: Insert the microSD Card into PocketBeagle

1. As soon as you apply power, the board will begin the booting process and the userLEDs Figure 14 will
come on in sequence as shown below. It will take a few seconds for the status LEDs to come on, like teaching
PocketBeagle to ‘stay’. The LEDs will be flashing as it begins to boot the Linux kernel. While the four user LEDS
can be over written and used as desired, they do have specific meanings in the image that you’ve initially
placed on your microSD card once the Linux kernel has booted.

• USER0 is the heartbeat indicator from the Linux kernel.

• USER1 turns on when the microSD card is being accessed

• USER2 is an activity indicator. It turns on when the kernel is not in the idle loop.

• USER3 idle

Accessing the Board and Getting Started with Coding The board will appear as a USB Storage drive on
your PC after the kernel has booted, which will take approximately 10 seconds. The kernel on the board needs
to boot before the port gets enumerated. Once the board appears as a storage drive, do the following:

1. Open the USB Drive folder to view the files on your PocketBeagle.

2. Launch Interactive Quick Start Guide.

Right Click on the file named START.HTM and open it in Chrome or Firefox. This will use your browser to open
a file running on PocketBeagle via the microSD card. You will see file:///Volumes/BEAGLEBONE/START.htm in
the url bar of the browser. See Figure 15 below. This action displays an interactive Quick Start Guide from
PocketBeagle.

1. Enable a Network Connection.

Click on ‘Step 2’ of the Interactive Quick Start Guide page to follow instructions to “Enable a Network Con-
nection” (pointing to the DHCP server that is running on PocketBeagle). Copy the appropriate IP Address from
the chart (according to your PC operating system type) and paste into your browser then add a :3000 to the
end of it. See example in Figure 16 below. This will launch from PocketBeagle one of it’s favorite Web Based
Development Environments, Cloud9 IDE, (Figure 17) so that you can teach your beagle new tricks!

268 Chapter 2. Boards

file:///Volumes/BEAGLEBONE/START.htm

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.144: Insert the micro USB Connector into PocketBeagle

2.6. PocketBeagle 269

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.145: Insert the USB connector into PC

Fig. 2.146: Board Power LED

Fig. 2.147: User LEDs

270 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.148: Interactive Quick Start Guide Launch

Fig. 2.149: Enable a Network Connection

Fig. 2.150: Launch Cloud9 IDE

2.6. PocketBeagle 271

BeagleBoard Docs, Release 1.0.20230308-wip

1. Get Started Coding with Cloud9 IDE - blinking USR3 LED in JavaScript using the BoneScript library example

1. Create a new text file

Copy and paste the below code into the editor

var b = require('bonescript');
var state = b.LOW;
b.pinMode(”USR3”, b.OUTPUT);
setInterval(toggle, 250); // toggle 4 times a second, every 250ms
function toggle() {

if(state == b.LOW) state = b.HIGH;
else state = b.LOW;
b.digitalWrite(”USR3”, state);

}

272 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Save the new text file as blinkusr3.js within the default directory

Execute .. code-block:

node blinkusr3.js

within the default (/var/lib/cloud9) directory

Type CTRL+C to stop the program running

Powering Down

1. Standard Power Down Press the power button momentarily with a tap. The system will power down
automatically. This will shut down your software with grace. Software routines will run to completion.
The Standard Power Down can also be invoked from the Linux command shell via “sudo shutdown -h now”.

2.6. PocketBeagle 273

BeagleBoard Docs, Release 1.0.20230308-wip

2. Hard Power Down Press the power button for 10 seconds. This will force an immediate shut down of the
software. For example you may lose any items you have written to the memory. Holding the button longer
than 10 seconds will perform a power reset and the system will power back on.

1. Remove the USB cable Remember to hold your board firmly at the USB connection while you remove the
cable to prevent damage to the USB connector.

4. Powering up again. If you’d like to power up again without removing the USB cable follow these instructions:

1. If you used Step 1 above to power down, to power back up, hold the power button for 10 seconds, release
then tap it once and the system will boot normally.

2. If you used Step 2 above to power down, to power back up, simply tap the power button and the system
will boot normally.

Fig. 2.151: Power Button

Other ways to Connect up to your PocketBeagle

The board can be configured in several different ways. Future revisions of this document may include additional
configurations.

As other examples become documented, we’ll update them on the Wiki for PocketBeagle PocketBeagle WiKi
See also the on-line discussion.

2.6.4 PocketBeagle Overview

PocketBeagle is built around Octavo Systems’ OSD335x-SM System-In-Package that integrates a high-
performance Texas Instruments AM3358 processor, 512MB of DDR3, power management, nonvolatile serial
memory and over 100 passive components into a single package. This integration saves board space by elimi-
nating several packages that would otherwise need to be placed on the board, but more notably simplifies our
board design so we can focus on the user experience.

The compact PocketBeagle design also offers access through the expansion headers to many of the interfaces
and allows for the use of add-on boards called PocketCapes and Click Boards from MikroElektronika, to add
many different combinations of features. A user may also develop their own board or add their own circuitry.

PocketBeagle Features and Specification

This section covers the specifications and features of the board in a chart and provides a high level description
of the major components and interfaces that make up the board.

274 Chapter 2. Boards

https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/home
https://groups.google.com/forum/?utm_medium=email&utm_source=footer#!msg/beagleboard/JtOGZb-FH2A/9GVu7I6kAQAJ

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.57: PocketBeagle Features
Feature
System-In-Package Octavo Systems OSD335x-SM in 256 Ball BGA (21mm x 21mm)
SiP Incorporates
Processor Texas Instruments 1GHz Sitara™ AM3358 ARM® Cortex®-A8 with NEON floating-point accelerator
Graphics Engine Imagination Technologies PowerVR SGX530 Graphics Accelerator
Real-Time Units 2x programmable real-time unit (PRU) 32-bit 200MHz microcontrollers with single-cycle I/O latency
Coprocessor ARM® Cortex®-M3 for power management functions
SDRAM Memory 512MB DDR3 800MHz RAM
Non-Volatile Mem-
ory

4KB I2C EEPROM for board configuration information

Power Management TPS65217C PMIC along with TL5209 LDO to provide power to the system with integrated 1-cell LiPo battery
support

Connectivity
SD/MMC Bootable microSD card slot
USB High speed USB 2.0 OTG (host/client) micro-B connector
Debug Support JTAG test points and gdb/other monitor-mode debug possible
Power Source microUSB connector, also expansion header options (battery, VIN or USB-VIN)
User I/O Power Button with press detection interrupt via TPS65217C PMIC
Expansion Header
USB High speed USB 2.0 OTG (host/client) control signals
Analog Inputs 8 analog inputs with 6 @ 1.8V and 2 @ 3.3V along with 1.8V references
Digital I/O 44 digital GPIOs accessible with 18 enabled by default including 2 shared with the 3.3V analog input pins
UART 3 UARTs accessible with 2 enabled by default
I2C 2 I2C buses enabled by default
SPI 2 SPI buses with single chip selects enabled by default
PWM 4 Pulse Width Modulation outputs accessible with 2 enabled by default
QEP 2 Quadrature encoder inputs accessible
CAN 2 CAN bus controllers accessible

OSD3358-512M-BSM System in Package The Octavo Systems OSD3358-512M-BSM System-In-Package
(SiP) is part of a family of products that are building blocks designed to allow easy and cost-effective imple-
mentation of systems based in Texas Instruments powerful Sitara AM335x line of processors. The OSD335x-SM
integrates the AM335x along with the TI TPS65217C PMIC, the TI TL5209 LDO, up to 1 GB of DDR3 Memory, a
4 KB EEPROM for non-volatile configuration storage and resistors, capacitors and inductors into a single 21mm
x 21mm design-in-ready package.

With this level of integration, the OSD335x-SM family of SiPs allows designers to focus on the key aspects of
their system without spending time on the complicated high-speed design of the processor/DDR3 interface or
the PMIC power distribution. It reduces size and complexity of design.

Full Datasheet and more information is available at octavosystems.com/octavo_products/osd335x-sm/

Board Component Locations

This section describes the key components on the board, their location and function.

Figure below shows the locations of the devices, connectors, LEDs, and switches on the PCB layout of the board.

Fig. 2.152: Key Board Component Locations

Key Components

2.6. PocketBeagle 275

https://octavosystems.com/octavo_products/osd335x-sm/

BeagleBoard Docs, Release 1.0.20230308-wip

• The Octavo Systems OSD3358-512M-BSM System-In-Package is the processor system for the
board

• P1 and P2 Headers come unpopulated so a user may choose their orientation

• User LEDs provides 4 programmable blue LEDs

• Power BUTTON can be used to power up or power down the board (see section 3.3.3 for details)

• USB 2.0 OTG is a microUSB connection to a PC that can also power the board

• Power LED provides communication regarding the power to the board

• microSD slot is where a microSD card can be installed.

2.6.5 PocketBeagle High Level Specification

This section provides the high level specification of PocketBeagle.

Block Diagram

Figure 22 below is the high level block diagram of PocketBeagle.

Fig. 2.153: PocketBeagle Key Components

System in Package (SiP)

The OSD335x-SM Block Diagram is detailed in Figure 23 below. More information, including design resources
are available on the ‘Octavo Systems Website’

Note: PocketBeagle utilizes the 512MB DDR3 memory size version of the OSD335x-SM A few of the features of
the OSD335x-SM SiP may not be available on PocketBeagle headers. Please check Section 7 for the P1 and P2
header pin tables.

Connectivity

Expansion Headers PocketBeagle gives access to a large number of peripheral functions and GPIO via 2
dual rail expansion headers. With 36 pins each, the headers have been left unpopulated to enable users to
choose the header connector orientation or add-on board / cape connector style. Pins are clearly marked on the
bottom of the board with additional pin configurations available through software settings. Detailed information
is available in Section 7.

276 Chapter 2. Boards

https://octavosystems.com/octavo_products/osd335x-sm

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.154: OSD335x SIP Block Diagram

Fig. 2.155: PocketBeagle Expansion Headers

2.6. PocketBeagle 277

BeagleBoard Docs, Release 1.0.20230308-wip

microSD Connector The board is equipped with a singlemicroSD connector to act as the primary boot source
for the board. Just about any microSD card you have will work, we commonly find 4G to be suitable.

When plugging in the SD card, the writing on the card should be up. Align the card with the connector and
push to insert. Then release. There should be a click and the card will start to eject slightly, but it then should
latch into the connector. To eject the card, push the SD card in and then remove your finger. The SD card will
be ejected from the connector. Do not pull the SD card out or you could damage the connector.

Fig. 2.156: microSD Connector

USB 2.0 Connector The board has a microUSB connector that is USB 2.0 HS compatible that connects the
USB0 port to the SiP. Generally this port is used as a client USB port connected to a power source, such as
your PC, to power the board. If you would like to use this port in host mode you will need to supply power
for peripherals via Header P1 pin 7 (USB1.VIN) or through a powered USB Hub. Additionally, in the USB host
configuration, you will need to power the board through Header P1 pin 1 (VIN) or Header P1 pin 7 (USB1.VIN)
or Header P2 pin 14 (BAT.VIN)

Fig. 2.157: USB 2.0 Connector

Boot Modes There are three boot modes:

• SD Boot: MicroSD connector acts as the primary boot source for the board. This is described in Section
3.

• USB Boot: This mode supports booting over the USB port. More information can be found in the project
called “BeagleBoot” This project ported the BeagleBone bootloader server BBBlfs(currently written in c)
to JavaScript(node.js) and make a cross platform GUI (using electron framework) flashing tool utilizing
the etcher.io project. This will allow a single code base for a cross platform tool. For more information on
BeagleBoot, see the BeagleBoot Project Page.

• Serial Boot: This mode will use the serial port to allow downloading of the software. A separate USB to
TTL level serial UART converter cable is required or you can connect one of the Mikroelektronika FTDI Click
Boards to use this method. The UART pins on PocketBeagle’s expansion headers support the interface.
For more information regarding the pins on the expansion headers and various modes, see Section 7.

Table 2.58: UART Pins on Expansion Headers for Serial Boot
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.22 GND GND
P1.30 U0_TX E16 B12 uart0_txd
P1.32 U0_RX E15 A12 uart0_rxd

278 Chapter 2. Boards

https://medium.com/@ravikp7/gsoc-2017-final-report-beagleboot-a20d28c8d632
http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_RPi.pdf
https://shop.mikroe.com/ftdi-click
https://shop.mikroe.com/ftdi-click

BeagleBoard Docs, Release 1.0.20230308-wip

If the Serial Boot is not in use, the UART0 pins can be used for Serial Debug. See Section 5.6 for more informa-
tion.

Software to support USB and serial boot modes is not provided by beagleboard.org. Please contact TI for
support of this feature.

Power

The board can be powered from three different sources:

• A USB port on a PC.

• A power supply with a USB connector.

• Expansion Header pins.

Note: VIN-USB is directly shorted between the USB connector on PocketBeagle and USB1_VI on the expansion
headers. You should only source power to the board over one of these and may optionally use the other as a
power sink.

The tables below show the power related pins available on PocketBeagle’s Expansion Headers.

Table 2.59: Power Inputs Available on Expansion Headers
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.01 VIN P10, R10, T10 VIN
P1.07 USB1_VI P9, R9, T9 VIN-USB
P2.14 BAT_+ P8, R8, T8 VIN-BAT

Table 2.60: Power Outputs Available on Expansion Headers
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.14 +3.3V F6, F7, G6, G7 VOUT-3.3V
P1.24 VOUT K6, K7, L6, L7 VOUT-5V
P2.13 VOUT K6, K7, L6, L7 VOUT-5V
P2.23 +3.3V F6, F7, G6, G7 VOUT-3.3V

Table 2.61: Ground Pins Available on Expansion Headers
H eader.Pin S ilkscreen Proc Ball SiP Ball Pin Name (Mode 0)
P1.15 USB1_GND GND
P1.16 GND GND
P1.22 GND GND
P2.15 GND GND
P2.21 GND GND

Note: A comprehensive tutorial for Power Inputs and Outputs for the OSD335x System in Package is available
in the ‘Tutorial Series’ on the Octavo Systems website.

JTAG Pads

Pads for an optional connection to a JTAG emulator has been provided on the back of PocketBeagle. More
information about JTAG emulation can be found on the TI website - ‘Entry-level debug through full-capability
development’

2.6. PocketBeagle 279

https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/power-input-output/
https://www.ti.com/tools-software/debug.html
https://www.ti.com/tools-software/debug.html

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.158: JTAG Pad Connections

Serial Debug Port

Serial debug is provided via UART0 on the processor. See Section 5.3.4 for the Header Pin table. Signals
supported are TX and RX. None of the handshake signals (CTS/RTS) are supported. A separate USB to TTL level
serial UART converter cable is required or you can connect one of the Mikroelektronika FTDI Click Boards to use
this method.

If serial boot is not used, the UART0 can be used to view boot messages during startup and can provide access
to a console using a terminal access program like Putty. To view the boot messages or use the console the
UART should be set to a baud rate of 115200 and use 8 bits for data, no parity bit and 1 stop bit (8N1).

2.6.6 Detailed Hardware Design

The following sections contain schematic references for PocketBeagle. Full schematics in both PDF and Eagle
are available on the ‘PocketBeagle Wiki’

OSD3358-SM SiP Design

Schematics for the OSD3358-SM SiP are divided into several diagrams.

SiP A OSD3358 SiP System and Power Signals

SiP B OSD3358 SiP JTAG, USB & Analog Signals

SiP C OSD3358 SiP Peripheral Signals

280 Chapter 2. Boards

http://www.ftdichip.com/Support/Documents/DataSheets/Cables/DS_TTL-232R_RPi.pdf
https://shop.mikroe.com/ftdi-click
http://www.putty.org/
https://git.beagleboard.org/beagleboard/pocketbeagle

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.159: SiP A OSD3358 SiP System and Power Signals

2.6. PocketBeagle 281

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.160: SiP B OSD3358 SiP JTAG, USB & Analog Signals

SiP D OSD3358 SiP System Boot Configuration

SiP E OSD3358 SiP Power Signals

SiP F OSD3358 SiP Power Signals

MicroSD Connection

The Micro Secure Digital (microSD) connector design is highlighted in Figure 35.

USB Connector

The USB connector design is highlighted in Figure 36.

Note that there is an ID pin for dual-role (host/client) functionality. The hardware fully supports it, but care
should be taken to ensure the kernel in use is either statically or dynamically configured to recognize and
utilize the proper mode.

Power Button Design

The power button design is highlighted in Figure 37.

282 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.161: SiP C OSD3358 SiP Peripheral Signals

2.6. PocketBeagle 283

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.162: SiP D OSD3358 SiP System Boot Configuration

284 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.163: SiP E OSD3358 SiP Power Signals

2.6. PocketBeagle 285

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.164: microSD Connections

286 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.165: USB Connection

Fig. 2.166: Power Button

2.6. PocketBeagle 287

BeagleBoard Docs, Release 1.0.20230308-wip

User LEDs

There are four user programmable LEDs on PocketBeagle. The design is highlighted in Figure 38. Table 6
Provides the LED control signals and pins. A logic level of “1” will cause the LEDs to turn on.

Fig. 2.167: User LEDs

Table 2.62: User LED Control Signals/Pins
LED Signal Name Proc Ball SiP Ball
USR0 GPIO1_21 V15 P13
USR1 GPIO1_22 U15 T14
USR2 GPIO1_23 T15 R14
USR3 GPIO1_24 V16 P14

JTAG Pads

There are 7 pads on the bottom of PocketBeagle to connect JTAG for debugging. The design is highlighted in
Figure 39. More information regarding JTAG debugging can be found at ‘www.ti.com/jtag’

PRU-ICSS

The Programmable Real-Time Unit Subsystem and Industrial Communication SubSystem (PRU-ICSS) module is
located inside the AM3358 processor, which is inside the Octavo Systems SiP. Commonly referred to as just
the “PRU”, this little subsystem will unleash a lot of performance for you to use in your application. Consisting
of dual 32-bit RISC cores (Programmable Real-Time Units, or PRUs), data and instruction memories, internal
peripheral modules, and an interrupt controller (INTC). The programmable nature of the PRU-ICSS, along with
their access to pins, events and all SoC resources, provides flexibility in implementing fast real-time responses,
specialized data handling operations, custom peripheral interfaces, and in offloading tasks from the other
processor cores of the system-on-chip (SoC). Access to these pins is provided by PocketBeagle’s expansion

288 Chapter 2. Boards

https://www.ti.com/jtag

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.168: JTAG Pads Design

headers and is multiplexed with other functions on the board. Access is not provided to all of the available
pins.

Some getting started information can be found on https://beagleboard.org/pru.

Additional documentation is located on the Texas Instruments website at processors.wiki.ti.com/index.php/PRU-
ICSS and also located at http://github.com/beagleboard/am335x_pru_package.

Example projects using the PRU-ICSS can be found in PRU Cookbook.

PRU-ICSS Features The features of the PRU-ICSS include:

Two independent programmable real-time (PRU) cores:

• 32-Bit Load/Store RISC architecture

• 8K Byte instruction RAM (2K instructions) per core

• 8K Bytes data RAM per core

• 12K Bytes shared RAM

• Operating frequency of 200 MHz

• PRU operation is little endian similar to ARM processor

• All memories within PRU-ICSS support parity

• Includes Interrupt Controller for system event handling

• Fast I/O interface

– 16 input pins and 16 output pins per PRU core. (Not all of these are accessible on the PocketBeagle. Please
check the Pin Table below for PRU-ICSS features available through the P1 and P2 headers.)

2.6. PocketBeagle 289

https://beagleboard.org/pru
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://processors.wiki.ti.com/index.php/PRU-ICSS
http://github.com/beagleboard/am335x_pru_package

BeagleBoard Docs, Release 1.0.20230308-wip

PRU-ICSS Block Diagram Figure below is a high level block diagram of the PRU-ICSS.

PRU-ICSS Pin Access Both PRU 0 and PRU1 are accessible from the expansion headers. Listed below are
the ports that can be accessed on each PRU.

Table 6. below shows which PRU-ICSS signals can be accessed on PocketBeagle and on which connector and
pins on which they are accessible. Some signals are accessible on the same pins.

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document,
you will need to print this chart separately.

290 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
bl
e
2.
63
:
PR
U0

an
d
PR
U1

Ac
ce
ss

He
ad
er
.P
in

Si
lks
cr
ee
n

Pr
oc
es
so
rB
all

Si
P
Ba
ll

M
od
e3

M
od
e4

M
od
e5

M
od
e6

No
te

P1
.0
2

A6
/8
7

R5
F2

pr
1_
pr
u1
_p
ru
_r
30
_9
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_9
(In
pu
t)

P1
.0
4

89
R6

E1
pr
1_
pr
u1
_p
ru
_r
30
_1
1
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_1
1
(In
pu
t)

P1
.0
6

SP
I0
_C
S

A1
6

A1
4

pr
1_
ua
rt
0_
tx
d
(O
ut
pu
t)

UA
RT
Tr
an
sm
it
D
at
a

P1
.0
8

SP
I0
_C
LK

A1
7

A1
3

pr
1_
ua
rt
0_
ct
s_
n
(In
pu
t)

UA
RT
Cl
ea
rt
o
Se
nd

P1
.1
0

SP
I0
_M
IS
O

B1
7

B1
3

pr
1_
ua
rt
0_
rt
s_
n
(O
ut
pu
t)

UA
RT
Re
qu
es
tt
o
Se
nd

P1
.1
2

SP
I0
_M
O
SI

B1
6

B1
4

pr
1_
ua
rt
0_
rx
d
(In
pu
t)

UA
RT
Re
ce
iv
e
D
at
a

P1
.2
0

20
D
14

B4
pr
1_
pr
u0
_p
ru
_r
31
_1
6
(In
pu
t)

P1
.2
6

I2
C2
_S
DA

D
18

B1
0

pr
1_
ua
rt
0_
ct
s_
n
(In
pu
t)

UA
RT
Cl
ea
rt
o
Se
nd

P1
.2
8

I2
C2
_S
CL

D
17

A1
0

pr
1_
ua
rt
0_
rt
s_
n
(O
ut
pu
t)

UA
RT
Re
qu
es
tt
o
Se
nd

P1
.2
9

PR
U0
_7

A1
4

C4
pr
1_
pr
u0
_p
ru
_r
30
_7
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_7
(In
pu
t)

P1
.3
0

U0
_T
X

E1
6

B1
2

pr
1_
pr
u1
_p
ru
_r
30
_1
5
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_1
5
(In
pu
t)

P1
.3
1

PR
U0
_4

B1
2

A3
pr
1_
pr
u0
_p
ru
_r
30
_4
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_4
(In
pu
t)

P1
.3
2

U0
_R
X

E1
5

A1
2

pr
1_
pr
u1
_p
ru
_r
30
_1
4
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_1
4
(In
pu
t)

P1
.3
3

PR
U0
_1

B1
3

A2
pr
1_
pr
u0
_p
ru
_r
30
_1
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_1
(In
pu
t)

P1
.3
5

P1
.1
0

V5
F1

pr
1_
pr
u1
_p
ru
_r
30
_1
0
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_1
0
(In
pu
t)

P1
.3
6

PW
M
0A

A1
3

A1
pr
1_
pr
u0
_p
ru
_r
30
_0
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_0
(In
pu
t)

P2
.0
9

I2
C1
_S
CL

D
15

B1
1

pr
1_
ua
rt
0_
tx
d
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_1
6
(In
pu
t)

UA
RT
Tr
an
sm
it
D
at
a

P2
.1
1

I2
C1
_S
DA

D
16

A1
1

pr
1_
ua
rt
0_
rx
d
(In
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_1
6
(In
pu
t)

UA
RT
Re
ce
iv
e
D
at
a

P2
.1
7

65
V1
2

T7
pr
1_
m
di
o_
m
dc
lk

M
D
IO
Cl
k

P2
.1
8

47
U1
3

P7
pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

pr
1_
pr
u0
_p
ru
_r
31
_1
5
(In
pu
t)

En
ha
nc
ed
ca
pt
ur
e
in
pu
to
rA
ux
ili
ar
y
PW
M
ou
t

P2
.2
0

64
T1
3

R7
pr
1_
m
di
o_
da
ta

M
D
IO
D
at
a

P2
.2
2

46
V1
3

T6
pr
1_
pr
u0
_p
ru
_r
31
_1
4
(In
pu
t)

P2
.2
4

48
T1
2

P6
pr
1_
pr
u0
_p
ru
_r
30
_1
4
(O
ut
pu
t)

P2
.2
8

PR
U0
_6

D
13

C3
pr
1_
pr
u0
_p
ru
_r
30
_6
O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_6
(In
pu
t)

P2
.2
9

SP
I1
_C
LK

C1
8

C5
pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

En
ha
nc
ed
ca
pt
ur
e
in
pu
to
rA
ux
ili
ar
y
PW
M
ou
t

P2
.3
0

PR
U0
_3

C1
2

B1
pr
1_
pr
u0
_p
ru
_r
30
_3
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_3
(In
pu
t)

P2
.3
1

SP
I1
_C
S

A1
5

A4
pr
1_
pr
u1
_p
ru
_r
31
_1
6
(In
pu
t)

P2
.3
2

PR
U0
_2

D
12

B2
pr
1_
pr
u0
_p
ru
_r
30
_2
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_2
(In
pu
t)

P2
.3
3

45
R1
2

R6
pr
1_
pr
u0
_p
ru
_r
30
_1
5
(O
ut
pu
t)

P2
.3
4

PR
U0
_5

C1
3

B3
pr
1_
pr
u0
_p
ru
_r
30
_5
(O
ut
pu
t)

pr
1_
pr
u0
_p
ru
_r
31
_5
(In
pu
t)

P2
.3
5

A5
/8
6

U5
F3

pr
1_
pr
u1
_p
ru
_r
30
_8
(O
ut
pu
t)

pr
1_
pr
u1
_p
ru
_r
31
_8
(In
pu
t)

2.6. PocketBeagle 291

BeagleBoard Docs, Release 1.0.20230308-wip

2.6.7 Connectors

This section describes each of the connectors on the board.

Expansion Header Connectors

The expansion interface on the board is comprised of two 36 pin connectors. The two Expansion Header
Connectors on PocketBeagle are labeled P1 and P2. The connections are a standard 100 mil distance so that
they can be compatible with many standard expansion items. The silkscreen for the headers on the bottom of
the board provides the easiest way to identify them. See Figure 41.

Fig. 2.169: Expansion Headers for PocketBeagle

All signals on the expansion headers are 3.3V unless otherwise indicated.

Note:

• Do not connect 5V logic level signals to these pins or the board will be damaged.

• DO NOT APPLY VOLTAGE TO ANY I/O PIN WHEN POWER IS NOT SUPPLIED TO THE BOARD. IT WILL DAMAGE
THE PROCESSOR AND VOID THE WARRANTY.

• NO PINS ARE TO BE DRIVEN UNTIL AFTER THE NRESET LINE GOES HIGH.

Figure 42 shows a color coded chart with an overview of themost popular functions of PocketBeagle’s Expansion
Header pins. The Header Pin tables in Sections 7.1.1 and 7.1.2 show the full pin assignments for each header.

P1 Header

Figure 43 shows the schematic diagram for the P1 Header.

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document
you will need to print this chart separately.

292 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.170: Expansion Header Popular Functions - Color Coded

2.6. PocketBeagle 293

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
bl
e
2.
64
:
P1
He
ad
er
Pi
no
ut

He
ad
er
.P
in

Si
lks
cr
ee
n

Po
ck
et
Be
a-

gle
wi
rin
g

Pr
oc
Ba
ll

Si
P
Ba
ll

M
od
e0

(N
am
e)

M
od
e1

M
od
e2

M
od
e3

M
od
e4

M
od
e5

M
od
e6

M
od
e7

P1
.0
1

VI
N

P1
.0
1
(V
IN
)

P1
0
&
R1
0
&

T1
0

VI
N

P1
.0
2

A6
/8
7

P1
.0
2

(A
IN
6/
G
PI
O
87
)

A8
C9

ai
n6

P1
.0
2

A6
/8
7

P1
.0
2

(A
IN
6/
G
PI
O
87
)

R5
F2

lc
d_
hs
yn
c

gp
m
c_
a9

gp
m
c_
a2

pr
1_
ed
io
_d
at
a_
in
3
pr
1_
ed
io
_d
at
a_
ou
t3p
r1
_p
ru
1_
pr
u_
r3
0_
9pr
1_
pr
u1
_p
ru
_r
31
_9g
pi
o2
_2
3

P1
.0
3

US
B1
_E
N

P1
.0
3
(U
SB
1-

D
RV
VB
US
)

F1
5

M
14

US
B1
_D
RV
VB
US

•
•

•
•

•
•

gp
io
3_
13

P1
.0
4

89
P1
.0
4

(P
RU
1.
11
)

R6
E1

lc
d_
ac
_b
ia
s_
en

gp
m
c_
a1
1

pr
1_
m
ii1
_c
rs

pr
1_
ed
io
_d
at
a_
in
5
pr
1_
ed
io
_d
at
a_
ou
t5p
r1
_p
ru
1_
pr
u_
r3
0_
11pr
1_
pr
u1
_p
ru
_r
31
_1
1gp
io
2_
25

P1
.0
5

US
B1
_V
B

P1
.0
5
(U
SB
1-

VB
US
)

T1
8

M
15

US
B1
_V
BU
S

•
•

•
•

•
•

•

P1
.0
6

SP
I0
_C
S

P1
.0
6

(S
PI
0-

CS
)

A1
6

A1
4

sp
i0
_c
s0

m
m
c2
_s
dw
p

I2
C1
_S
CL

eh
rp
w
m
0_
sy
nc
i

pr
1_
ua
rt
0_
tx
d

pr
1_
ed
io
_d
at
a_
in
1
pr
1_
ed
io
_d
at
a_
ou
t1g
pi
o0
_5

P1
.0
7

US
B1
_V
I

P1
.0
7

(V
IN
-

US
B)

P9
&
R9
&
T9

VI
N-
US
B

P1
.0
8

SP
I0
_C
LK

P1
.0
8

(S
PI
0-

CL
K)

A1
7

A1
3

sp
i0
_s
cl
k

ua
rt
2_
rx
d

I2
C2
_S
DA

eh
rp
w
m
0A

pr
1_
ua
rt
0_
ct
s_
n

pr
1_
ed
io
_s
of

EM
U2

gp
io
0_
02

P1
.0
9

US
B1
-

P1
.0
9
(U
SB
1-

D
N)

R1
8

L1
6

US
B1
_D
M

•
•

•
•

•
•

•

P1
.1
0

SP
I0
_M
IS
O

P1
.1
0

(S
PI
0-

M
IS
O
)

B1
7

B1
3

sp
i0
_d
0

ua
rt
2_
tx
d

I2
C2
_S
CL

eh
rp
w
m
0B

pr
1_
ua
rt
0_
rt
s_
n

pr
1_
ed
io
_l
at
ch
_i
n
EM
U3

gp
io
0_
3

P1
.1
1

US
B1
+

P1
.1
1
(U
SB
1-

D
P)

R1
7

L1
5

US
B1
_D
P

•
•

•
•

•
•

•

P1
.1
2

SP
I0
_M
O
SI

P1
.1
2

(S
PI
0-

M
O
SI
)

B1
6

B1
4

sp
i0
_d
1

m
m
c1
_s
dw
p

I2
C1
_S
DA

eh
rp
w
m
0_
tr
ip
zo
ne
_i
np
ut

pr
1_
ua
rt
0_
rx
d

pr
1_
ed
io
_d
at
a_
in
0
pr
1_
ed
io
_d
at
a_
ou
t0g
pi
o0
_0
4

P1
.1
3

US
B1
_I
D

P1
.1
3
(U
SB
1-

ID
)

P1
7

L1
4

US
B1
_I
D

•
•

•
•

•
•

•

P1
.1
4

+
3.
3V

P1
.1
4
(V
O
UT
-

3.
3V
)

F6
&
F7
&
G
6

&
G
7

VO
UT
-3
.3
V

P1
.1
5

US
B1
_G
ND

P1
.1
5
(G
ND
)

G
ND

P1
.1
6

G
ND

P1
.1
6
(G
ND
)

G
ND

P1
.1
7

AI
N(
1.
8V
)-

P1
.1
7
(V
RE
FN
)

A9
B9

VR
EF
N

P1
.1
8

AI
N(
1.
8V
)A
+

P1
.1
8
(V
RE
FP
)

B9
B7

VR
EF
P

P1
.1
9

AI
N(
1.
8V
)0

P1
.1
9

(A
IN
0-

1.
8V
)

B6
A8

ai
n0

P1
.2
0

20
P1
.2
0

(P
RU
0.
16
)

D
14

B4
xd
m
a_
ev
en
t_
in
tr
1

•
tc
lk
in

cl
ko
ut
2

tim
er
7

pr
1_
pr
u0
_p
ru
_r
31
_1
6EM
U3

gp
io
0_
20

P1
.2
1

AI
N(
1.
8V
)1

P1
.2
1

(A
IN
1-

1.
8V
)

C7
B8

ai
n1

P1
.2
2

G
ND

P1
.2
2
(G
ND
)

G
ND

P1
.2
3

AI
N(
1.
8V
)2

P1
.2
3

(A
IN
2-

1.
8V
)

B7
B6

ai
n2

co
nt
inu
es
on
ne
xt
pa
ge

294 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
ble

2.
64
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

He
ad
er
.P
in

Si
lks
cr
ee
n

Po
ck
et
Be
a-

gle
wi
rin
g

Pr
oc
Ba
ll

Si
P
Ba
ll

M
od
e0

(N
am
e)

M
od
e1

M
od
e2

M
od
e3

M
od
e4

M
od
e5

M
od
e6

M
od
e7

P1
.2
4

VO
UT

P1
.2
4
(V
O
UT
-

5V
)

K6
&
K7

&
L6

&
L7

VO
UT
-5
V

P1
.2
5

AI
N(
1.
8V
)3

P1
.2
5

(A
IN
3-

1.
8V
)

A7
C6

ai
n3

P1
.2
6

I2
C2
_S
DA

P1
.2
6

(I2
C2
-

SD
A)

D
18

B1
0

ua
rt
1_
ct
sn

tim
er
6

dc
an
0_
tx

I2
C2
_S
DA

sp
i1
_c
s0

pr
1_
ua
rt
0_
ct
s_
n

pr
1_
ed
c_
la
tc
h0
_i
n
gp
io
0_
12

P1
.2
7

AI
N(
1.
8V
)4

P1
.2
7

(A
IN
4-

1.
8V
)

C8
C7

ai
n4

P1
.2
8

I2
C2
_S
CL

P1
.2
8

(I2
C2
-

SC
L)

D
17

A1
0

ua
rt
1_
rt
sn

tim
er
5

dc
an
0_
rx

I2
C2
_S
CL

sp
i1
_c
s1

pr
1_
ua
rt
0_
rt
s_
n

pr
1_
ed
c_
la
tc
h1
_i
n
gp
io
0_
13

P1
.2
9

PR
U0
_7

P1
.2
9

(P
RU
0.
7)

A1
4

C4
m
ca
sp
0_
ah
cl
kx

eQ
EP
0_
st
ro
be

m
ca
sp
0_
ax
r3

m
ca
sp
1_
ax
r1

EM
U4

pr
1_
pr
u0
_p
ru
_r
30
_7p
r1
_p
ru
0_
pr
u_
r3
1_
7gp
io
3_
21

P1
.3
0

U0
_T
X

P1
.3
0
(U
AR
T0
-

TX
)

E1
6

B1
2

ua
rt
0_
tx
d

sp
i1
_c
s1

dc
an
0_
rx

I2
C2
_S
CL

eC
AP
1_
in
_P
W
M
1_
ou
tpr
1_
pr
u1
_p
ru
_r
30
_1
5pr
1_
pr
u1
_p
ru
_r
31
_1
5gp
io
1_
11

P1
.3
1

PR
U0
_4

P1
.3
1

(P
RU
0.
4)

B1
2

A3
m
ca
sp
0_
ac
lk
r

eQ
EP
0A
_i
n

m
ca
sp
0_
ax
r2

m
ca
sp
1_
ac
lk
x

m
m
c0
_s
dw
p

pr
1_
pr
u0
_p
ru
_r
30
_4p
r1
_p
ru
0_
pr
u_
r3
1_
4gp
io
3_
18

P1
.3
2

U0
_R
X

P1
.3
2
(U
AR
T0
-

RX
)

E1
5

A1
2

ua
rt
0_
rx
d

sp
i1
_c
s0

dc
an
0_
tx

I2
C2
_S
DA

eC
AP
2_
in
_P
W
M
2_
ou
tpr
1_
pr
u1
_p
ru
_r
30
_1
4pr
1_
pr
u1
_p
ru
_r
31
_1
4gp
io
1_
10

P1
.3
3

PR
U0
_1

P1
.3
3

(P
RU
0.
1)

B1
3

A2
m
ca
sp
0_
fs
x

eh
rp
w
m
0B

•
sp
i1
_d
0

m
m
c1
_s
dc
d

pr
1_
pr
u0
_p
ru
_r
30
_1p
r1
_p
ru
0_
pr
u_
r3
1_
1gp
io
3_
15

P1
.3
4

26
P1
.3
4

(G
PI
O
0.
26
)

T1
1

R5
gp
m
c_
ad
10

lc
d_
da
ta
21

m
m
c1
_d
at
2

m
m
c2
_d
at
6

eh
rp
w
m
2_
tr
ip
zo
ne
_i
np
ut

pr
1_
m
ii0
_t
xe
n

•
gp
io
0_
26

P1
.3
5

P1
.1
0

P1
.3
5

(P
RU
1.
10
)

V5
F1

lc
d_
pc
lk

gp
m
c_
a1
0

pr
u_
m
ii0
_c
rs

pr
1_
ed
io
_d
at
a_
in
4
pr
1_
ed
io
_d
at
a_
ou
t4p
r1
_p
ru
1_
pr
u_
r3
0_
10pr
1_
pr
u1
_p
ru
_r
31
_1
0gp
io
2_
24

P1
.3
6

PW
M
0A

P1
.3
6

(P
W
M
0A
)

A1
3

A1
m
ca
sp
0_
ac
lk
x

eh
rp
w
m
0A

•
sp
i1
_s
cl
k

m
m
c0
_s
dc
d

pr
1_
pr
u0
_p
ru
_r
30
_0p
r1
_p
ru
0_
pr
u_
r3
1_
0gp
io
3_
14

2.6. PocketBeagle 295

BeagleBoard Docs, Release 1.0.20230308-wip

P2 Header

Figure 44 shows the schematic diagram for the P2 Header.

Fig. 2.171: P2 Header

Use scroll bar at bottom of chart to see additional features in columns to the right. When printing this document
you will need to print this chart separately.

296 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
bl
e
2.
65
:
P2
He
ad
er
Pi
no
ut

He
ad
er
.P
in

Si
lks
cr
ee
n

Po
ck
et
Be
a-

gle
wi
rin
g

Pr
oc
Ba
ll

Si
P
Ba
ll

M
od
e0

(N
am
e)

M
od
e1

M
od
e2

M
od
e3

M
od
e4

M
od
e5

M
od
e6

M
od
e7

P2
.0
1

PW
M
1A

P2
.0
1

(P
W
M
1A
)

U1
4

P1
2

gp
m
c_
a2

gm
ii2
_t
xd
3

rg
m
ii2
_t
d3

m
m
c2
_d
at
1

gp
m
c_
a1
8

pr
1_
m
ii1
_t
xd
2

eh
rp
w
m
1A

gp
io
1_
18

P2
.0
2

59
P2
.0
2

(G
PI
O
1.
27
)

V1
7

T1
6

gp
m
c_
a1
1

gm
ii2
_r
xd
0

rg
m
ii2
_r
d0

rm
ii2
_r
xd
0

gp
m
c_
a2
7

pr
1_
m
ii1
_r
xe
r

m
ca
sp
0_
ax
r1

gp
io
1_
27

P2
.0
3

23
P2
.0
3

(G
PI
O
0.
23
)

T1
0

P5
gp
m
c_
d9

lc
d_
da
ta
22

m
m
c1
_d
at
1

m
m
c2
_d
at
5

eh
rp
w
m
2B

pr
1_
m
ii0
_c
ol

•
gp
io
0_
23

P2
.0
4

58
P2
.0
4

(G
PI
O
1.
26
)

T1
6

R1
5

gp
m
c_
a1
0

gm
ii2
_r
xd
1

rg
m
ii2
_r
d1

rm
ii2
_r
xd
1

gp
m
c_
a2
6

pr
1_
m
ii1
_r
xd
v

m
ca
sp
0_
ax
r0

gp
io
1_
26

P2
.0
5

U1
_R
X

P2
.0
5
(U
AR
T4
-

RX
)

T1
7

P1
5

gp
m
c_
w
ai
t0

gm
ii2
_c
rs

gp
m
c_
cs
n4

rm
ii2
_c
rs
_d
v

m
m
c1
_s
dc
d

pr
1_
m
ii1
_c
ol

ua
rt
4_
rx
d

gp
io
0_
30

P2
.0
6

57
P2
.0
6

(G
PI
O
1.
25
)

U1
6

T1
5

gp
m
c_
a9

gm
ii2
_r
xd
2

rg
m
ii2
_r
d2

m
m
c2
_d
at
7
/

rm
ii2
_c
rs
_d
v

gp
m
c_
a2
5

pr
1_
m
ii_
m
r1
_c
lk

m
ca
sp
0_
fs
x

gp
io
1_
25

P2
.0
7

U1
_T
X

P2
.0
7
(U
AR
T4
-

TX
)

U1
7

R1
6

gp
m
c_
w
p

gm
ii2
_r
xe
rr

gp
m
c_
cs
n5

rm
ii2
_r
xe
rr

m
m
c2
_s
dc
d

pr
1_
m
ii1
_t
xe
n

ua
rt
4_
tx
d

gp
io
0_
31

P2
.0
8

60
P2
.0
8

(G
PI
O
1.
28
)

U1
8

N1
4

gp
m
c_
be
1n

gm
ii2
_c
ol

gp
m
c_
cs
n6

m
m
c2
_d
at
3

gp
m
c_
di
r

pr
1_
m
ii1
_r
xl
in
k

m
ca
sp
0_
ac
lk
r

gp
io
1_
28

P2
.0
9

I2
C1
_S
CL

P2
.0
9

(I2
C1
-

SC
L)

D
15

B1
1

ua
rt
1_
tx
d

m
m
c2
_s
dw
p

dc
an
1_
rx

I2
C1
_S
CL

•
pr
1_
ua
rt
0_
tx
d

pr
1_
pr
u0
_p
ru
_r
31
_1
6gp
io
0_
15

P2
.1
0

52
P2
.1
0

(G
PI
O
1.
20
)

R1
4

R1
3

gp
m
c_
a4

gm
ii2
_t
xd
1

rg
m
ii2
_t
d1

rm
ii2
_t
xd
1

gp
m
c_
a2
0

pr
1_
m
ii1
_t
xd
0

eQ
EP
1A
_i
n

gp
io
1_
20

P2
.1
1

I2
C1
_S
DA

P2
.1
1

(I2
C1
-

SD
A)

D
16

A1
1

ua
rt
1_
rx
d

m
m
c1
_s
dw
p

dc
an
1_
tx

I2
C1
_S
DA

•
pr
1_
ua
rt
0_
rx
d

pr
1_
pr
u1
_p
ru
_r
31
_1
6gp
io
0_
14

P2
.1
2

PB
P2
.1
2

(P
O
W
ER
_B
TN
)

T1
1

PO
W
ER

P2
.1
3

VO
UT

P2
.1
3
(V
O
UT
-

5V
)

K6
,K
7,
L6
,L
7

VO
UT
-5
V

P2
.1
4

BA
T
+

P2
.1
4

(V
IN
-

BA
T)

P8
,R
8,
T8

VI
N-
BA
T

P2
.1
5

G
ND

P2
.1
5
(G
ND
)

G
ND

P2
.1
6

BA
T
-

P2
.1
6

(B
AT
-

TE
M
P)

N6
BA
T-
TE
M
P

P2
.1
7

65
P2
.1
7

(G
PI
O
2.
1)

V1
2

T7
gp
m
c_
cl
k

lc
d_
m
em
or
y_
cl
k

gp
m
c_
w
ai
t1

m
m
c2
_c
lk

pr
1_
m
ii1
_c
rs

pr
1_
m
di
o_
m
dc
lk

m
ca
sp
0_
fs
r

gp
io
2_
01

P2
.1
8

47
P2
.1
8

(P
RU
0.
15
i)

U1
3

P7
gp
m
c_
ad
15

lc
d_
da
ta
16

m
m
c1
_d
at
7

m
m
c2
_d
at
3

eQ
EP
2_
st
ro
be

pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

pr
1_
pr
u0
_p
ru
_r
31
_1
5gp
io
1_
15
P

P2
.1
9

27
P2
.1
9

(G
PI
O
0.
27
)

U1
2

T5
gp
m
c_
ad
11

lc
d_
da
ta
20

m
m
c1
_d
at
3

m
m
c2
_d
at
7

eh
rp
w
m
0_
sy
nc
o

pr
1_
m
ii0
_t
xd
3

•
gp
io
0_
27

P2
.2
0

64
P2
.2
0

(G
PI
O
2.
0)

T1
3

R7
gp
m
c_
cs
n3

gp
m
c_
a3

rm
ii2
_c
rs
_d
v

m
m
c2
_c
m
d

pr
1_
m
ii0
_c
rs

pr
1_
m
di
o_
da
ta

EM
U4

gp
io
2_
00

P2
.2
1

G
ND

P2
.2
1
(G
ND
)

G
ND

P2
.2
2

46
P2
.2
2

(G
PI
O
1.
14
)

V1
3

T6
gp
m
c_
ad
14

lc
d_
da
ta
17

m
m
c1
_d
at
6

m
m
c2
_d
at
2

eQ
EP
2_
in
de
x

pr
1_
m
ii0
_t
xd
0

pr
1_
pr
u0
_p
ru
_r
31
_1
4gp
io
1_
14

P2
.2
3

+
3.
3V

P2
.2
3
(V
O
UT
-

3.
3V
)

F6
&
F7
&
G
6

&
G
7

VO
UT
-3
.3
V

P2
.2
4

48
P2
.2
4

(G
PI
O
1.
12
)

T1
2

P6
gp
m
c_
ad
12

lc
d_
da
ta
19

m
m
c1
_d
at
4

m
m
c2
_d
at
0

eQ
EP
2A
_i
n

pr
1_
m
ii0
_t
xd
2

pr
1_
pr
u0
_p
ru
_r
30
_1
4gp
io
1_
12

co
nt
inu
es
on
ne
xt
pa
ge

2.6. PocketBeagle 297

BeagleBoard Docs, Release 1.0.20230308-wip

Ta
ble

2.
65
–c
on
tin
ue
d
fro
m
pr
ev
iou
sp
ag
e

He
ad
er
.P
in

Si
lks
cr
ee
n

Po
ck
et
Be
a-

gle
wi
rin
g

Pr
oc
Ba
ll

Si
P
Ba
ll

M
od
e0

(N
am
e)

M
od
e1

M
od
e2

M
od
e3

M
od
e4

M
od
e5

M
od
e6

M
od
e7

P2
.2
5

SP
I1
_M
O
SI

P2
.2
5

(S
PI
1-

M
O
SI
)

E1
7

C1
3

ua
rt
0_
rt
sn

ua
rt
4_
tx
d

dc
an
1_
rx

I2
C1
_S
CL

sp
i1
_d
1

sp
i1
_c
s0

pr
1_
ed
c_
sy
nc
1_
ou
tg
pi
o1
_0
9

P2
.2
6

RS
T

P2
.2
6

(N
RE
-

SE
T)

A1
0

R1
1

nR
E-

SE
TI
N_
O
UT

•
•

•
•

•
•

•

P2
.2
7

SP
I1
_M
IS
O

P2
.2
7

(S
PI
1-

M
IS
O
)

E1
8

C1
2

ua
rt
0_
ct
sn

ua
rt
4_
rx
d

dc
an
1_
tx

I2
C1
_S
DA

sp
i1
_d
0

tim
er
7

pr
1_
ed
c_
sy
nc
0_
ou
tg
pi
o1
_0
8

P2
.2
8

PR
U0
_6

P2
.2
8

(P
RU
0.
6)

D
13

C3
m
ca
sp
0_
ax
r1

eQ
EP
0_
in
de
x

•
m
ca
sp
1_
ax
r0

EM
U3

pr
1_
pr
u0
_p
ru
_r
30
_6p
r1
_p
ru
0_
pr
u_
r3
1_
6gp
io
3_
20

P2
.2
9

SP
I1
_C
LK

P2
.2
9

(S
PI
1-

CL
K)

C1
8

C5
eC
AP
0_
in
_P
W
M
0_
ou
tua
rt
3_
tx
d

sp
i1
_c
s1

pr
1_
ec
ap
0_
ec
ap
_c
ap
in
_a
pw
m
_o

sp
i1
_s
cl
k

m
m
c0
_s
dw
p

xd
m
a_
ev
en
t_
in
tr
2
gp
io
0_
7

P2
.3
0

PR
U0
_3

P2
.3
0

(P
RU
0.
3)

C1
2

B1
m
ca
sp
0_
ah
cl
kr

eh
rp
w
m
0_
sy
nc
i

m
ca
sp
0_
ax
r2

sp
i1
_c
s0

eC
AP
2_
in
_P
W
M
2_
ou
tpr
1_
pr
u0
_p
ru
_r
30
_3p
r1
_p
ru
0_
pr
u_
r3
1_
3gp
io
3_
17

P2
.3
1

SP
I1
_C
S

P2
.3
1

(S
PI
1-

CS
1)

A1
5

A4
xd
m
a_
ev
en
t_
in
tr
0

•
tim
er
4

cl
ko
ut
1

sp
i1
_c
s1

pr
1_
pr
u1
_p
ru
_r
31
_1
6EM
U2

gp
io
0_
19

P2
.3
2

PR
U0
_2

P2
.3
2

(P
RU
0.
2)

D
12

B2
m
ca
sp
0_
ax
r0

eh
rp
w
m
0_
tr
ip
zo
ne
_i
np
ut
•

sp
i1
_d
1

m
m
c2
_s
dc
d

pr
1_
pr
u0
_p
ru
_r
30
_2p
r1
_p
ru
0_
pr
u_
r3
1_
2gp
io
3_
16

P2
.3
3

45
P2
.3
3

(G
PI
O
1.
13
)

R1
2

R6
gp
m
c_
ad
13

lc
d_
da
ta
18

m
m
c1
_d
at
5

m
m
c2
_d
at
1

eQ
EP
2B
_i
n

pr
1_
m
ii0
_t
xd
1

pr
1_
pr
u0
_p
ru
_r
30
_1
5gp
io
1_
13

P2
.3
4

PR
U0
_5

P2
.3
4

(P
RU
0.
5)

C1
3

B3
m
ca
sp
0_
fs
r

eQ
EP
0B
_i
n

m
ca
sp
0_
ax
r3

m
ca
sp
1_
fs
x

EM
U2

pr
1_
pr
u0
_p
ru
_r
30
_5p
r1
_p
ru
0_
pr
u_
r3
1_
5gp
io
3_
19

P2
.3
5

A5
/8
6

P2
.3
5

(A
IN
5/
G
PI
O
86
)

B8
C8

ai
n5

P2
.3
5

A5
/8
6

P2
.3
5

(A
IN
5/
G
PI
O
86
)

U5
F3

lc
d_
vs
yn
c

gp
m
c_
a8

gp
m
c_
a1

pr
1_
ed
io
_d
at
a_
in
2
pr
1_
ed
io
_d
at
a_
ou
t2p
r1
_p
ru
1_
pr
u_
r3
0_
8pr
1_
pr
u1
_p
ru
_r
31
_8g
pi
o2
_2
2

P2
.3
6

A7
(1
.8
)

P2
.3
6
(A
IN
7)

N1
3

ai
n7

298 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

mikroBUS socket connections

mikroBUS and, by extension “mikroBUS Click boards”, are trademarks of MikroElektronika. We do not make
any claims of compatibility nor adherence to their specification. We’ve just seen that many of the Click boards
“just work”.

The Expansion Headers on PocketBeagle have been designed to accept up to two Click Boards added to the
header pins at the same time. This provides an exciting opportunity to add functionality easily to PocketBeagle
from ‘hundreds of existing add-on Click Boards’.

The mikroBUS standard comprises a pair of 1×8 female headers with a standardized pin configuration. The
pinout (always laid out in the same order) consists of three groups of communications pins (SPI, UART and I2C),
six additional pins (PWM, Interrupt, Analog input, Reset and Chip select), and two power groups (+3.3V and
5V).

Fig. 2.172: mikroBUS

The Expansion Header pin alignment enables 2 Click Boards on the top side of PocketBeagle using the inside
rails of the headers. This leaves the outside rails open to be accessed from either the top or the bottom of
PocketBeagle. Place each Click Board into the position shown in Figure 46, with one Click Board facing each
direction. When choosing Click boards, make sure you are checking that they meet the 3.3V requirements
for PocketBeagle. A growing number of community members are trying out various Click Boards and posting
results on the ‘PocketBeagle Wiki mikroBus Click Boards page’.

Fig. 2.173: PocketBeagle Both Headers

Setting up an additional USB Connection

You can add an additional USB connection to PocketBeagle easily by connecting a microUSB breakout. By
default in the current software, the system should be configured to use this port as a host. Keep up to date on
this project on the ‘PocketBeagle Wiki FAQ’.

2.6. PocketBeagle 299

https://shop.mikroe.com/click
https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/mikroBus%E2%84%A2-Click-Boards
https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/FAQ

BeagleBoard Docs, Release 1.0.20230308-wip

2.6.8 PocketBeagle Cape Support

This is a placeholder for recommendations for those building their own PocketBeagle Cape designs. If you’d
like to join the conversation ‘check out the discussion on the forum for PocketBeagle’

See also PocketBeagle under ‘BeagleBoard Capes’

2.6.9 PocketBeagle Mechanical

9.1 Dimensions and Weight

Size: 2.21” x 1.38” (56mm x 35mm)

Max height: .197” (5mm)

PCB size: 55mm x 35mm

PCB Layers: 4

PCB thickness: 1.6mm

RoHS Compliant: Yes

Weight: 10g

Rough model can be found at PocketBeagle models

2.6.10 Additional Pictures

2.6.11 Support Information

All support for this design is through the BeagleBoard.org community at:

• beagleboard@googlegroups.com or

• beagleboard.org/discuss.

300 Chapter 2. Boards

https://forum.beagleboard.org/t/pocketbeagle-headers/26861
https://git.beagleboard.org/beagleboard/capes
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/models
https://beagleboard.org/chat
https://beagleboard.org/discuss

BeagleBoard Docs, Release 1.0.20230308-wip

Fig. 2.174: PocketBeagle Front BW

Fig. 2.175: PocketBeagle Back BW

2.6. PocketBeagle 301

BeagleBoard Docs, Release 1.0.20230308-wip

Hardware Design

Design documentation can be found on the wiki. https://git.beagleboard.org/beagleboard/pocketbeagle/ In-
cluding:

• Schematic in PDF https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_
sch.pdf

• Schematic and layout in EAGLE https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/
EAGLE

• Schematic and layout in KiCAD https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/
KiCAD

• Bill of Materials https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_
BOM.csv

• PocketBeagle docs.

Software Updates

It is a good idea to always use the latest software. Instructions for how to update your software to the latest
version can be found at:

Download the latest software files from www.beagleboard.org/distros

Export Information

• ECCN: EAR99

• CCATS: G173833

• Documentation: PocketBeagle_Export_Classification.pdf

RMA Support

If you feel your board is defective or has issues and before returning merchandise, please seek approval from
the manufacturer using beagleboard.org/support/rma. You will need the manufacturer, model, revision and
serial number of the board.

Getting Help

If you need some up to date troubleshooting techniques, the Wiki is a great place to start PocketBeagle wiki.

If you need professional support, check out beagleboard.org/resources.

2.7 Capes

Note: This page is under development.

Contributors

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

302 Chapter 2. Boards

https://git.beagleboard.org/beagleboard/pocketbeagle/
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_sch.pdf
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_sch.pdf
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/EAGLE
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/EAGLE
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/KiCAD
https://git.beagleboard.org/beagleboard/pocketbeagle/-/tree/master/KiCAD
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_BOM.csv
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/PocketBeagle_BOM.csv
https://www.beagleboard.org/distros
https://git.beagleboard.org/beagleboard/pocketbeagle/-/blob/master/regulatory/PocketBeagle_Export_Classification.pdf
https://www.beagleboard.org/rma
https://git.beagleboard.org/beagleboard/pocketbeagle/-/wikis/home
https://beagleboard.org/resources
http://creativecommons.org/licenses/by-sa/4.0/

BeagleBoard Docs, Release 1.0.20230308-wip

Note: Make sure to read and accept all the terms & condition provided in the Terms & Conditions page.

Use of either the boards or the design materials constitutes agreement to the T&C including any modifications
done to the hardware or software solutions provided by beagleboard.org foundation.

Capes are add-on boards for BeagleBone or PocketBeagle families of boards. Using a Cape add-on board, you
can easily add sensors, communication peripherals, and more.

Please visit BeagleBoard.org - Cape for the list of currently available Cape add-on boards.

In the BeagleBone board family, there are many variants, such as BeagleBone Black, BeagleBone AI, Beagle-
Bone AI-64 and compatibles such as SeeedStudio BeagleBone Green, SeeedStudio BeagleBone Green Wireless,
SeeedStudio BeagleBone Green Gateway and more.

The BeagleBone cape interface spec enables a common set of device tree overlays and software to be utilized
on each of these different BeagleBone boards.

Each hardware has different internal pin assignments and the number of peripherals in the SoC, but the device
tree overlay absorbs these differences.

The user of the Cape add-on boards are essentially able to use it across the corresponding Boards without
changing any code at all.

Find the instructions below on using each cape:

• BeagleBoard.org BeagleBone Relay Cape

2.7.1 BeagleBone cape interface spec

This page is a fork of BeagleBone cape interface spec page on elinux. This is the new official home.

Background and overview

Important: Resources

• See Device Tree: Supporting Similar Boards - The BeagleBone Example blog post on BeagleBoard.org

• See spreadsheet with pin header details

• See elinux.org Cape Expansion Headers for BeagleBone page

• See BeagleBone Black System Reference Manual Connectors section

• See BeagleBone AI System Reference Manual Connectors section

• See BeagleBone AI-64 System Reference Manual Connectors section

Note: Below, when mentioning “Black”, this is true for all AM3358-based BeagleBone boards. “AI” is AM5729-
based. “AI-64” is TDA4VM-based.

The device tree symbols for the BeagleBone Cape Compatibility Layer are provided in BeagleBoard-DeviceTrees
at:

• Black: bbb-bone-buses.dtsi

• AI: bbai-bone-buses.dtsi

• AI-64: k3-j721e-beagleboneai-64-bone-buses.dtsi

2.7. Capes 303

https://beagleboard.org/capes
https://beagleboard.org/green
https://beagleboard.org/green-wireless
https://wiki.seeedstudio.com/BeagleBone-Green-Gateway/
https://elinux.org/Beagleboard:BeagleBone_cape_interface_spec
https://beagleboard.org/blog/2022-03-31-device-tree-supporting-similar-boards-the-beaglebone-example
https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:Cape_Expansion_Headers
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/-/blob/v5.10.x-ti-unified/src/arm/bbb-bone-buses.dtsi
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/-/blob/v5.10.x-ti-unified/src/arm/bbai-bone-buses.dtsi
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/-/blob/v5.10.x-ti-unified/src/arm64/k3-j721e-beagleboneai64-bone-buses.dtsi

BeagleBoard Docs, Release 1.0.20230308-wip

The udev rules used to create the userspace symlinks for the BeagleBone Cape Compatibility Layer are provided
in usr-customizations at:

More details can be found in Methodology.

Note: Legend

• D: Digital general purpose input and output (GPIO)

• I: Inter-integrated circuit bus (I2C) ports

• S: Serial peripheral interface (SPI) ports

• U: Universal asynchronous reciever/transmitter (UART) serial ports

• C: CAN

• A: Analog inputs

• E: PWM

• Q: Capture/EQEP

• M: MMC/SD/SDIO

• B: I2S/audio serial ports

• L: LCD

• P: PRU

• Y: ECAP

Table 2.66: Overall
P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1 E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C 5 6 D M C
5V OUT 7 8 5V OUT D C 7 8 D C
PWR BUT 9 10 RESET D C 9 10 D C
D U 11 12 D D P 11 12 D Q P
D U 13 14 D E D E 13 14 D
D 15 16 D E D P 15 16 D P
D I S 17 18 D I S D 17 18 D
D I C 19 20 D I C D E 19 20 D M P
D E S U 21 22 D E S U D M P 21 22 D M Q
D S 23 24 D I U C D M 23 24 D M
D P 25 26 D I U C D M 25 26 D
D P Q 27 28 D S P D L P 27 28 D L P U
D E S P 29 30 D S P D L P U 29 30 D L P
D E S P 31 32 ADC VDD

REF OUT
D L 31 32 D L

A 33 34 ADC GND D L Q 33 34 D E L
A 35 36 A D L Q 35 36 D E L
A 37 38 A D L U 37 38 D L U
A 39 40 A D L P 39 40 D L P
D P 41 42 D Q S U P D L P 41 42 D L P
GND 43 44 GND D L P 43 44 D L P
GND 45 46 GND D E L P 45 46 D E L P

Digital GPIO

The compatibility layer comes with simple reference nodes for attaching the Linuuux gpio-leds or gpio-keys to
any cape header GPIO pin. This provides simple userspace general purpose input or output with various trigger

304 Chapter 2. Boards

https://git.beagleboard.org/beagleboard/usr-customizations

BeagleBoard Docs, Release 1.0.20230308-wip

modes.

The format followed for the gpio-leds nodes is bone_led_P8_## / bone_led_P9_##. The gpio-leds driver is
used by these reference nodes internally and allows users to easily create compatible led nodes in overlays for
Black, AI and AI-64.

Listing 2.1: Example device tree overlay to enable LED driver on header
P8 pin 3

1 /dts-v1/;
2 /plugin/;
3

4 &bone_led_P8_03 {
5 status = ”okay”;
6 }

In Example device tree overlay to enable LED driver on header P8 pin 3, it is possible to redefine the default
label and other properties defined in the gpio-leds schema.

Table 2.67: GPIO pins
P9 P8
Functions odd even Functions Functions odd even Functions
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P0o 11 12 D Q2a P0o
D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c S00 17 18 D I1d S0o D 17 18 D
C0r D I2c 19 20 C0t D I2d D E2a 19 20 D M P1
D E0b S0i
U2t

21 22 D E0a S0c
U2r

D M P1 21 22 D M Q2b

D S01 23 24 C1r D I3c
U1t

D M 23 24 D M

D P0 25 26 C1t D I3d
U1r

D M 25 26 D

D P0 Q0b 27 28 D P0 S10 D L P1 27 28 D L P1 U6r
D E S1i P0 29 30 D P0 S1o D L P1 U6t 29 30 D L P1
D E S1c P0 31 32 ADC VDD D L 31 32 D L
A 4 33 34 ADC GND D L Q1b 33 34 D E L
A 6 35 36 A 5 D L Q1a 35 36 D E L
A 2 37 38 A 3 D L U5t 37 38 D L U5r
A 0 39 40 A 1 D L P1 39 40 D L P1
D P0 41 42 D Q0a S11

U3t P0
D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

Table 2.68: Bone GPIO LEDs interface
LED SYSFS Header pin Black AI AI-64

/sys/class/leds/P8_03 P8_03 gpio1_6 gpio1_24 gpio0_20
/sys/class/leds/P8_04 P8_04 gpio1_7 gpio1_25 gpio0_48
/sys/class/leds/P8_05 P8_05 gpio1_2 gpio7_1 gpio0_33
/sys/class/leds/P8_06 P8_06 gpio1_3 gpio7_2 gpio0_34
/sys/class/leds/P8_07 P8_07 gpio2_2 gpio6_5 gpio0_15
/sys/class/leds/P8_08 P8_08 gpio2_3 gpio6_6 gpio0_14
/sys/class/leds/P8_09 P8_09 gpio2_5 gpio6_18 gpio0_17
/sys/class/leds/P8_10 P8_10 gpio2_4 gpio6_4 gpio0_16
/sys/class/leds/P8_11 P8_11 gpio1_13 gpio3_11 gpio0_60
/sys/class/leds/P8_12 P8_12 gpio1_12 gpio3_10 gpio0_59

continues on next page

2.7. Capes 305

https://elixir.bootlin.com/linux/v5.10/source/Documentation/devicetree/bindings/leds/leds-gpio.yaml

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.68 – continued from previous page
LED SYSFS Header pin Black AI AI-64

/sys/class/leds/P8_13 P8_13 gpio0_23 gpio4_11 gpio0_89
/sys/class/leds/P8_14 P8_14 gpio0_26 gpio4_13 gpio0_75
/sys/class/leds/P8_15 P8_15 gpio1_15 gpio4_3 gpio0_61
/sys/class/leds/P8_16 P8_16 gpio1_14 gpio4_29 gpio0_62
/sys/class/leds/P8_17 P8_17 gpio0_27 gpio8_18 gpio0_3
/sys/class/leds/P8_18 P8_18 gpio2_1 gpio4_9 gpio0_4
/sys/class/leds/P8_19 P8_19 gpio0_22 gpio4_10 gpio0_88
/sys/class/leds/P8_20 P8_20 gpio1_31 gpio6_30 gpio0_76
/sys/class/leds/P8_21 P8_21 gpio1_30 gpio6_29 gpio0_30
/sys/class/leds/P8_22 P8_22 gpio1_5 gpio1_23 gpio0_5
/sys/class/leds/P8_23 P8_23 gpio1_4 gpio1_22 gpio0_31
/sys/class/leds/P8_24 P8_24 gpio1_1 gpio7_0 gpio0_6
/sys/class/leds/P8_25 P8_25 gpio1_0 gpio6_31 gpio0_35
/sys/class/leds/P8_26 P8_26 gpio1_29 gpio4_28 gpio0_51
/sys/class/leds/P8_27 P8_27 gpio2_22 gpio4_23 gpio0_71
/sys/class/leds/P8_28 P8_28 gpio2_24 gpio4_19 gpio0_72
/sys/class/leds/P8_29 P8_29 gpio2_23 gpio4_22 gpio0_73
/sys/class/leds/P8_30 P8_30 gpio2_25 gpio4_20 gpio0_74
/sys/class/leds/P8_31 P8_31 gpio0_10 gpio8_14 gpio0_32
/sys/class/leds/P8_32 P8_32 gpio0_11 gpio8_15 gpio0_26
/sys/class/leds/P8_33 P8_33 gpio0_9 gpio8_13 gpio0_25
/sys/class/leds/P8_34 P8_34 gpio2_17 gpio8_11 gpio0_7
/sys/class/leds/P8_35 P8_35 gpio0_8 gpio8_12 gpio0_24
/sys/class/leds/P8_36 P8_36 gpio2_16 gpio8_10 gpio0_8
/sys/class/leds/P8_37 P8_37 gpio2_14 gpio8_8 gpio0_106
/sys/class/leds/P8_38 P8_38 gpio2_15 gpio8_9 gpio0_105
/sys/class/leds/P8_39 P8_39 gpio2_12 gpio8_6 gpio0_69
/sys/class/leds/P8_40 P8_40 gpio2_13 gpio8_7 gpio0_70
/sys/class/leds/P8_41 P8_41 gpio2_10 gpio8_4 gpio0_67
/sys/class/leds/P8_42 P8_42 gpio2_11 gpio8_5 gpio0_68
/sys/class/leds/P8_43 P8_43 gpio2_8 gpio8_2 gpio0_65
/sys/class/leds/P8_44 P8_44 gpio2_9 gpio8_3 gpio0_66
/sys/class/leds/P8_45 P8_45 gpio2_6 gpio8_0 gpio0_79
/sys/class/leds/P8_46 P8_46 gpio2_7 gpio8_1 gpio0_80
/sys/class/leds/P9_11 P9_11 gpio0_30 gpio8_17 gpio0_1
/sys/class/leds/P9_12 P9_12 gpio1_28 gpio5_0 gpio0_45
/sys/class/leds/P9_13 P9_13 gpio0_31 gpio6_12 gpio0_2
/sys/class/leds/P9_14 P9_14 gpio1_18 gpio4_25 gpio0_93
/sys/class/leds/P9_15 P9_15 gpio1_16 gpio3_12 gpio0_47
/sys/class/leds/P9_16 P9_16 gpio1_19 gpio4_26 gpio0_94
/sys/class/leds/P9_17 P9_17 gpio0_5 gpio7_17 gpio0_28
/sys/class/leds/P9_18 P9_18 gpio0_4 gpio7_16 gpio0_40
/sys/class/leds/P9_19 P9_19 gpio0_13 gpio7_3 gpio0_78
/sys/class/leds/P9_20 P9_20 gpio0_12 gpio7_4 gpio0_77
/sys/class/leds/P9_21 P9_21 gpio0_3 gpio3_3 gpio0_39
/sys/class/leds/P9_22 P9_22 gpio0_2 gpio6_19 gpio0_38
/sys/class/leds/P9_23 P9_23 gpio1_17 gpio7_11 gpio0_10
/sys/class/leds/P9_24 P9_24 gpio0_15 gpio6_15 gpio0_13
/sys/class/leds/P9_25 P9_25 gpio3_21 gpio6_17 gpio0_127
/sys/class/leds/P9_26 P9_26 gpio0_14 gpio6_14 gpio0_12
/sys/class/leds/P9_27 P9_27 gpio3_19 gpio4_15 gpio0_46
/sys/class/leds/P9_28 P9_28 gpio3_17 gpio4_17 gpio1_11
/sys/class/leds/P9_29 P9_29 gpio3_15 gpio5_11 gpio0_53

continues on next page

306 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.68 – continued from previous page
LED SYSFS Header pin Black AI AI-64

/sys/class/leds/P9_30 P9_30 gpio3_16 gpio5_12 gpio0_44
/sys/class/leds/P9_31 P9_31 gpio3_14 gpio5_10 gpio0_52
/sys/class/leds/P9_33 P9_33 n/a n/a gpio0_50
/sys/class/leds/P9_35 P9_35 n/a n/a gpio0_55
/sys/class/leds/P9_36 P9_36 n/a n/a gpio0_56
/sys/class/leds/P9_37 P9_37 n/a n/a gpio0_57
/sys/class/leds/P9_38 P9_38 n/a n/a gpio0_58
/sys/class/leds/P9_39 P9_39 n/a n/a gpio0_54
/sys/class/leds/P9_40 P9_40 n/a n/a gpio0_81
/sys/class/leds/P9_41 P9_41 gpio0_20 gpio6_20 gpio1_0
/sys/class/leds/P9_42 P9_42 gpio0_7 gpio4_18 gpio0_123
/sys/class/leds/A15 A15 gpio0_19 NA NA

I2C

Compatibility layer provides simple I2C bone bus nodes for creating compatible overlays for Black, AI and AI-64.
The format followed for these nodes is bone_i2c_#.

Table 2.69: I2C pins
P9
Functions odd even Functions
1 SCL 17 18 1 SDA
2 SCL 19 20 2 SDA
4 SCL45 21 22 4 SDA??

23 24 3 SCL3

25 26 3 SDA?

Table 2.70: I2C port mapping
SYSFS DT symbol Black AI AI-64 SCL SDA Overlay
/dev/bone/i2c/0 bone_i2c_0 I2C0 I2C1 TBD On-board
/dev/bone/i2c/1 bone_i2c_1 I2C1 I2C5 MAIN_I2C6 P9.17 P9.18 BONE-I2C1
/dev/bone/i2c/2 bone_i2c_2 I2C2 I2C4 MAIN_I2C3 P9.19 P9.20 BONE-I2C2
/dev/bone/i2c/3 bone_i2c_3 I2C1 I2C3 MAIN_I2C4 P9.24 P9.26 BONE-I2C3
/dev/bone/i2c/4 bone_i2c_4 I2C2 n/a MAIN_I2C3 P9.21 P9.22 BONE-I2C4

Important: In the case the same controller is used for 2 different bone bus nodes, usage of those nodes is
mutually-exclusive.

Note: The provided pre-compiled overlays enable the I2C bus driver only, not a specific device driver. Either
a custom overlay is required to load the device driver or usermode device driver loading can be performed,
depending on the driver. See Using I2C with Linux drivers for information on loading I2C drivers from userspace.

Listing 2.2: Example device tree overlay to enable I2C driver

1 /dts-v1/;
2 /plugin/;
3

4 &bone_i2c_1 {
5 status = ”okay”;

(continues on next page)

4 Mutually exclusive with port 2 on Black
5 On Black and AI-64 only
3 Mutually exclusive with port 1 on Black

2.7. Capes 307

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

6 accel@1c {
7 compatible = ”fsl,mma8453”;
8 reg = <0x1c>;
9 };
10 }

In Example device tree overlay to enable I2C driver, you can specify what driver you want to load and provide
any properties it might need.

• https://www.kernel.org/doc/html/v5.10/i2c/summary.html

• https://www.kernel.org/doc/html/v5.10/i2c/instantiating-devices.html#method-1-declare-the-i2c-devices-statically

• https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/

SPI

SPI bone bus nodes allow creating compatible overlays for Black, AI and AI-64.

Table 2.71: SPI pins
P9
Functions odd even Functions
0 CS0 17 18 0 SDO

19 20
0 SDI 21 22 0 CLK
0 CS1 23 24

25 26
27 28 1 CS0

1 SDI 29 30 1 SDO
1 CLK 31 32

33 34
35 36
37 38
39 40
41 42 1 CS12

Table 2.72: SPI port mapping
Bone bus DT symbol Black AI AI-64 SDO SDI CLK CS Overlay
/dev/bone/spi/0.0 bone_spi_0 SPI0 SPI2 MAIN_SPI6 P9.18 P9.21 P9.22 P9.17 (CS0) BONE-SPI0_0
/dev/bone/spi/0.1 P9.23 (CS1)? BONE-SPI0_1
/dev/bone/spi/1.0 bone_spi_1 SPI1 SPI3 MAIN_SPI7 P9.30 P9.29 P9.31 P9.28 (CS0) BONE-SPI1_0
/dev/bone/spi/1.1 P9.42 (CS1) BONE-SPI1_1

Note: The provided pre-compiled overlays enable the “spidev” driver using the
“rohm,dh2228fv” compatible string. See https://stackoverflow.com/questions/53634892/
linux-spidev-why-it-shouldnt-be-directly-in-devicetree for more background. A custom overlay is required to
overload the compatible string to load a non-spidev driver.

Note: #TODO# figure out if BONE-SPI0_0 and BONE-SPI0_1 can be loaded at the same time

Listing 2.3: Example device tree overlay to enable SPI driver

1 /dts-v1/;
2 /plugin/;

(continues on next page)

2 Only available on AI and AI-64

308 Chapter 2. Boards

https://www.kernel.org/doc/html/v5.10/i2c/summary.html
https://www.kernel.org/doc/html/v5.10/i2c/instantiating-devices.html#method-1-declare-the-i2c-devices-statically
https://www.kernel.org/doc/Documentation/devicetree/bindings/i2c/
https://stackoverflow.com/questions/53634892/linux-spidev-why-it-shouldnt-be-directly-in-devicetree
https://stackoverflow.com/questions/53634892/linux-spidev-why-it-shouldnt-be-directly-in-devicetree

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

3

4 &bone_spi_0 {
5 status = ”okay”;
6 pressure@0 {
7 compatible = ”bosch,bmp280”;
8 reg = <0>; /* CS0 */
9 spi-max-frequency = <5000000>;
10 };
11 }

In Example device tree overlay to enable SPI driver, you can specify what driver you want to load and provide
any properties it might need.

• https://www.kernel.org/doc/html/v5.10/spi/spi-summary.html

• https://www.kernel.org/doc/Documentation/devicetree/bindings/spi/

UART

UART bone bus nodes allow creating compatible overlays for Black, AI and AI-64.

Table 2.73: UART pins
P9 P8
Functions odd even Functions Functions odd even Functions
4 RX6 11 12 11 12
4 TX? 13 14 13 14

15 16 15 16
17 18 17 18
19 20 19 20

2 TX 21 22 2 RX 21 22
23 24 1 TX 23 24
25 26 1 RX 25 26
27 28 27 28 6 RX
29 30 6 TX 29 30
31 32 31 32
33 34 33 34 7 TX
35 36 35 36
37 38 5 TX 37 38 5 RX
39 40 39 40
41 42 3 TX 41 42

Important: RTSn and CTSn mappings are not compatible across boards in the family and are therefore not
part of the cape specification.

Table 2.74: UART port mapping
Bone bus DT symbol Black AI AI-64 TX RX Overlay
/dev/bone/uart/0 bone_uart_0 UART0 UART1 MAIN_UART0 Console debug header pins
/dev/bone/uart/1 bone_uart_1 UART1 UART10 MAIN_UART2 P9.24 P9.26 BONE-UART1
/dev/bone/uart/2 bone_uart_2 UART2 UART3 n/a P9.21 P9.22 BONE-UART2
/dev/bone/uart/3 bone_uart_3 UART3 n/a n/a P9.42 n/a BONE-UART3
/dev/bone/uart/4 bone_uart_4 UART4 UART5 MAIN_UART0? P9.13 P9.11 BONE-UART4
/dev/bone/uart/5 bone_uart_5 UART5 UART8 MAIN_UART5 P8.37 P8.38 BONE-UART5
/dev/bone/uart/6 bone_uart_6 n/a n/a MAIN_UART8 P8.29 P8.28 BONE-UART6
/dev/bone/uart/7 bone_uart_7 n/a n/a MAIN_UART2 P8.34 P8.22 BONE-UART7

Important: In the case the same controller is used for 2 different bone bus nodes, usage of those nodes is
6 This port is shared with the console UART on AI-64

2.7. Capes 309

https://www.kernel.org/doc/html/v5.10/spi/spi-summary.html
https://www.kernel.org/doc/Documentation/devicetree/bindings/spi/

BeagleBoard Docs, Release 1.0.20230308-wip

mutually-exclusive.

CAN

CAN bone bus nodes allow creating compatible overlays for Black, AI and AI-64.

Table 2.75: CAN pins
P9 P8
Functions odd even Functions Functions odd even Functions

5 6 4 TX 5 6 4 RX
7 8 2 RX 7 8 2 TX
9 10 3 RX 9 10 3 TX
11 12 11 12
13 14 13 14
15 16 15 16
17 18 17 18

0 RX 19 20 0 TX 19 20
21 22 21 22
23 24 1 RX 23 24
25 26 1 TX 25 26

Table 2.76: CAN port mapping
Bone bus Black AI AI-64 TX RX Overlays
/dev/bone/can/0 CAN0 n/a MAIN_MCAN0 P9.20 P9.19 BONE-CAN0
/dev/bone/can/1 CAN1 CAN2 MAIN_MCAN4 P9.26 P9.24 BONE-CAN1
/dev/bone/can/2 n/a CAN11 MAIN_MCAN5 P8.08 P8.07 BONE-CAN2
/dev/bone/can/3 n/a n/a MAIN_MCAN6 P8.10 P8.09 BONE-CAN3
/dev/bone/can/4 n/a n/a MAIN_MCAN7 P8.05 P8.06 BONE-CAN4

ADC

• TODO: We need a udev rule to make sure the ADC shows up at /dev/bone/adc! There’s nothing for sure
that IIO devices will show up in the same place.

• TODO: I think we can also create symlinks for each channel based on which device is there, such that we
can do /dev/bone/adc/Px_y

1 BeagleBone AI rev A2 and later only

310 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.77: ADC pins
P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1 E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P0o 11 12 D Q2a P0o
D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c S00 17 18 D I1d S0o D 17 18 D
C0r D I2c 19 20 C0t D I2d D E2a 19 20 D M P1
D E0b S0i
U2t

21 22 D E0a S0c
U2r

D M P1 21 22 D M Q2b

D S01 23 24 C1r D I3c
U1t

D M 23 24 D M

D P0 25 26 C1t D I3d
U1r

D M 25 26 D

D P0 Q0b 27 28 D P0 S10 D L P1 27 28 D L P1 U6r
D E S1i P0 29 30 D P0 S1o D L P1 U6t 29 30 D L P1
D E S1c P0 31 32 ADC VDD D L 31 32 D L
A 4 33 34 ADC GND D L Q1b 33 34 D E L
A 6 35 36 A 5 D L Q1a 35 36 D E L
A 2 37 38 A 3 D L U5t 37 38 D L U5r
A 0 39 40 A 1 D L P1 39 40 D L P1
D P0 41 42 D Q0a S11

U3t P0
D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

Table 2.78: Bone ADC
Index Header pin Black/AI-64 AI
0 P9_39 in_voltage0_raw in_voltage0_raw
1 P9_40 in_voltage1_raw in_voltage1_raw
2 P9_37 in_voltage2_raw in_voltage3_raw
3 P9_38 in_voltage3_raw in_voltage2_raw
4 P9_33 in_voltage4_raw in_voltage7_raw
5 P9_36 in_voltage5_raw in_voltage6_raw
6 P9_35 in_voltage6_raw in_voltage4_raw

Table 2.79: Bone ADC Overlay
Black AI AI-64 overlay
Internal External (STMPE811) TBD BONE-ADC.dts

PWM PWM bone bus nodes allow creating compatible overlays for Black, AI and AI-64. For the definitions,
you can see bbai-bone-buses.dtsi#L415 & bbb-bone-buses.dtsi#L432

2.7. Capes 311

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BONE-ADC.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L415
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L432

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.80: PWM pins
P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1 E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P0o 11 12 D Q2a P0o
D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c S00 17 18 D I1d S0o D 17 18 D
C0r D I2c 19 20 C0t D I2d D E2a 19 20 D M P1
D E0b S0i
U2t

21 22 D E0a S0c
U2r

D M P1 21 22 D M Q2b

D S01 23 24 C1r D I3c
U1t

D M 23 24 D M

D P0 25 26 C1t D I3d
U1r

D M 25 26 D

D P0 Q0b 27 28 D P0 S10 D L P1 27 28 D L P1 U6r
D E S1i P0 29 30 D P0 S1o D L P1 U6t 29 30 D L P1
D E S1c P0 31 32 ADC VDD D L 31 32 D L
A 4 33 34 ADC GND D L Q1b 33 34 D E L
A 6 35 36 A 5 D L Q1a 35 36 D E L
A 2 37 38 A 3 D L U5t 37 38 D L U5r
A 0 39 40 A 1 D L P1 39 40 D L P1
D P0 41 42 D Q0a S11

U3t P0
D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

Table 2.81: Bone bus PWM
Bone bus Black AI AI-64 A B Overlay
/dev/bone/pwm/0 PWM0

•
PWM1 P9.22 P9.21 BONE-

PWM0.dts

/dev/bone/pwm/1 PWM1 PWM3 PWM2 P9.14 P9.16 BONE-
PWM1.dts

/dev/bone/pwm/2 PWM2 PWM2 PWM0 P8.19 P8.13 BONE-
PWM2.dts

TIMER PWM TIMER PWM bone bus uses ti,omap-dmtimer-pwm driver, and timer nodes that allow creat-
ing compatible overlays for Black, AI and AI-64. For the timer node definitions, you can see bbai-bone-
buses.dtsi#L449 & bbb-bone-buses.dtsi#L466.

Table 2.82: Bone TIMER PWMs
Bone bus Header pin Black AI overlay
/sys/bus/platform/devices/bone_timer_pwm_0/P8.10 timer6 timer10 BONE-

TIMER_PWM_0.dts
/sys/bus/platform/devices/bone_timer_pwm_1/P8.07 timer4 timer11 BONE-

TIMER_PWM_1.dts
/sys/bus/platform/devices/bone_timer_pwm_2/P8.08 timer7 timer12 BONE-

TIMER_PWM_2.dts
/sys/bus/platform/devices/bone_timer_pwm_3/P9.21

•
timer13 BONE-

TIMER_PWM_3.dts

/sys/bus/platform/devices/bone_timer_pwm_4/P8.09 timer5 timer14 BONE-
TIMER_PWM_4.dts

/sys/bus/platform/devices/bone_timer_pwm_5/P9.22
•

timer15 BONE-
TIMER_PWM_5.dts

312 Chapter 2. Boards

https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_pwm/src/arm/BONE-PWM2.dts
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L449
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbai-bone-buses.dtsi#L449
https://github.com/lorforlinux/BeagleBoard-DeviceTrees/blob/97a6f0daa9eab09633a2064f68a53b107d6e3968/src/arm/bbb-bone-buses.dtsi#L466
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_0.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_1.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_2.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_3.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_4.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_4.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_5.dts
https://github.com/lorforlinux/bb.org-overlays/blob/bone_timer/src/arm/BONE-TIMER_PWM_5.dts

BeagleBoard Docs, Release 1.0.20230308-wip

eQEP

Table 2.83: eQEP pins
P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1 E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P0o 11 12 D Q2a P0o
D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c S00 17 18 D I1d S0o D 17 18 D
C0r D I2c 19 20 C0t D I2d D E2a 19 20 D M P1
D E0b S0i
U2t

21 22 D E0a S0c
U2r

D M P1 21 22 D M Q2b

D S01 23 24 C1r D I3c
U1t

D M 23 24 D M

D P0 25 26 C1t D I3d
U1r

D M 25 26 D

D P0 Q0b 27 28 D P0 S10 D L P1 27 28 D L P1 U6r
D E S1i P0 29 30 D P0 S1o D L P1 U6t 29 30 D L P1
D E S1c P0 31 32 ADC VDD D L 31 32 D L
A 4 33 34 ADC GND D L Q1b 33 34 D E L
A 6 35 36 A 5 D L Q1a 35 36 D E L
A 2 37 38 A 3 D L U5t 37 38 D L U5r
A 0 39 40 A 1 D L P1 39 40 D L P1
D P0 41 42 D Q0a S11

U3t P0
D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

On BeagleBone’s without an eQEP on specific pins, consider using the PRU to perform a software counter
function.

Table 2.84: Bone eQEP
Bone bus Black AI AI-64 A B strobe index overlay
/dev/bone/counter/0eQEP0 eQEP2 eQEP0 P9.42 P9.27

•
Black/AI-
64:
P9.25

• AI:
P8.06

•
Black/AI-
64:
P9.41

• AI:
P8.05

/dev/bone/counter/1eQEP1 eQEP0 eQEP1 P8.35 P8.33
•
Black/AI-
64:
P8.32

• AI:
P9.21

•
Black/AI-
64:
P8.31

• AI:
‒

/dev/bone/counter/2eQEP2 eQEP1 ‒ P8.12 P8.22
•
Black:
P8.15

• AI:
P8.18

•
Black:
P8.16

• AI:
P9.15

eCAP #TODO: This doesn’t include any abstraction yet.

2.7. Capes 313

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.85: ECAP pins
P9 P8
Functions odd even Functions Functions odd even Functions
USB D+ E1 E2 USB D-
5V OUT E3 E4 GND
GND 1 2 GND GND 1 2 GND
3V3 OUT 3 4 3V3 OUT D M 3 4 D M
5V IN 5 6 5V IN D M C4t 5 6 D M C4r
5V OUT 7 8 5V OUT D C2r 7 8 D C2t
PWR BUT 9 10 RESET D C3r 9 10 D C3t
D U4r 11 12 D D P0o 11 12 D Q2a P0o
D U4t 13 14 D E1a D E2b 13 14 D
D 15 16 D E1b D P0i 15 16 D P0i
D I1c S00 17 18 D I1d S0o D 17 18 D
C0r D I2c 19 20 C0t D I2d D E2a 19 20 D M P1
D E0b S0i
U2t

21 22 D E0a S0c
U2r

D M P1 21 22 D M Q2b

D S01 23 24 C1r D I3c
U1t

D M 23 24 D M

D P0 25 26 C1t D I3d
U1r

D M 25 26 D

D P0 Q0b 27 28 D P0 S10 D L P1 27 28 D L P1 U6r
D E S1i P0 29 30 D P0 S1o D L P1 U6t 29 30 D L P1
D E S1c P0 31 32 ADC VDD D L 31 32 D L
A 4 33 34 ADC GND D L Q1b 33 34 D E L
A 6 35 36 A 5 D L Q1a 35 36 D E L
A 2 37 38 A 3 D L U5t 37 38 D L U5r
A 0 39 40 A 1 D L P1 39 40 D L P1
D P0 41 42 D Q0a S11

U3t P0
D L P1 41 42 D L P1

GND 43 44 GND D L P1 43 44 D L P1
GND 45 46 GND D E L P1 45 46 D E L P1

Table 2.86: Black eCAP PWMs
Bone bus Header pin peripheral overlay
/sys/bus/platform/drivers/ecap/48302100.ecap P9.42 eCAP0_in_PWM0_out BBB-ECAP0.dts
/sys/bus/platform/drivers/ecap/48304100.ecap P9.28 eCAP2_in_PWM2_out BBB-ECAP2.dts

Table 2.87: AI eCAP PWMs
Bone bus Header pin peripheral overlay
/sys/bus/platform/drivers/ecap/4843e100.ecap P8.15 eCAP1_in_PWM1_out BBAI-ECAP1.dts
/sys/bus/platform/drivers/ecap/48440100.ecap P8.14 eCAP2_in_PWM2_out BBAI-ECAP2.dts
/sys/bus/platform/drivers/ecap/48440100.ecap P8.20 eCAP2_in_PWM2_out BBAI-ECAP2A.dts
/sys/bus/platform/drivers/ecap/48442100.ecap P8.04 eCAP3_in_PWM3_out BBAI-ECAP3.dts
/sys/bus/platform/drivers/ecap/48442100.ecap P8.26 eCAP3_in_PWM3_out BBAI-ECAP3A.dts

eMMC

Table 2.88: Bone eMMC
Header pin Description
P8.3 DAT6
P8.4 DAT7
P8.5 DAT2
P8.6 DAT3
P8.20 CMD
P8.21 CLK
P8.22 DAT5
P8.23 DAT4
P8.24 DAT1
P8.25 DAT0

314 Chapter 2. Boards

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBB-ECAP0.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBB-ECAP2.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP1.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP2.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP2A.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP3.dts
https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BBAI-ECAP3A.dts

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.89: Bone eMMC Overlay
Black AI overlay
MMC2 MMC3 BONE-eMMC.dts

LCD

Table 2.90: 16bit LCD interface
Header pin Description
P8_45 lcd_data0
P8_46 lcd_data1
P8_43 lcd_data2
P8_44 lcd_data3
P8_41 lcd_data4
P8_42 lcd_data5
P8_39 lcd_data6
P8_40 lcd_data7
P8_37 lcd_data8
P8_38 lcd_data9
P8_36 lcd_data10
P8_34 lcd_data11
P8_35 lcd_data12
P8_33 lcd_data13
P8_31 lcd_data14
P8_32 lcd_data15
P8_27 lcd_vsync
P8_29 lcd_hsync
P8_28 lcd_pclk
P8_30 lcd_ac_bias_en

Table 2.91: 16bit LCD interface Overlay
Black AI overlay
lcdc dss

McASP

Table 2.92: Bone McASP0
Header pin Description
P9.12 aclkr
P9.25 ahclkx
P9.27 fsr
P9.28 Black: axr2 AI: axr9
P9.29 fsx
P9.30 Black: axr0 AI: axr10
P9.31 aclkx

Table 2.93: Bone McASP0 Overlay
Black AI overlay
McASP0 McASP1

PRU The overlay situation for PRUs is a bit more complex than with other peripherals. The mecha-
nism for loading, starting and stopping the PRUs can go through either [https://www.kernel.org/doc/html/
latest/driver-api/uio-howto.html UIO] or [https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/
Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html RemoteProc].

• /dev/remoteproc/prussX-coreY (AM3358 X = “”, other x = “1|2”)

2.7. Capes 315

https://git.beagleboard.org/beagleboard/BeagleBoard-DeviceTrees/blob/v4.19.x-ti-overlays/src/arm/overlays/BONE-eMMC.dts
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://www.kernel.org/doc/html/latest/driver-api/uio-howto.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html
https://software-dl.ti.com/processor-sdk-linux/esd/docs/latest/linux/Foundational_Components/PRU-ICSS/Linux_Drivers/RemoteProc_and_RPMsg.html

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.94: Bone PRU eCAP
Header Pin Black AI
P8.15 pr1_ecap0 pr1_ecap0
P8.32

•
pr2_ecap0

P9.42 pr1_ecap0
•

Table 2.95: AI PRU UART
UART TX RX RTSn CTSn Overlays
PRU1 UART0 P8_31 P8_33 P8_34 P8_35
PRU2 UART0 P8_43 P8_44 P8_45 P8_46

Table 2.96: Bone PRU
Header Pin Black AI
P8.03

•
pr2_pru0 10

P8.04
•

pr2_pru0 11

P8.05
•

pr2_pru0 06

P8.06
•

pr2_pru0 07

P8.07
•

pr2_pru1 16

P8.08
•

pr2_pru0 20

P8.09
•

pr2_pru1 06

P8.10
•

pr2_pru1 15

P8.11 pr1_pru0 15 (Out) pr1_pru0 04
P8.12 pr1_pru0 14 (Out) pr1_pru0 03
P8.13

•
pr1_pru1 07

P8.14
•

pr1_pru1 09

P8.15 pr1_pru0 15 (In) pr1_pru1 16
P8.16 pr1_pru0 14 (In) pr1_pru1 18
P8.17

•
pr2_pru0 15

continues on next page

316 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.96 – continued from previous page
Header Pin Black AI
P8.18

•
pr1_pru1 05

P8.19
•

pr1_pru1 06

P8.20
•

pr2_pru0 03

P8.21
•

pr2_pru0 02

P8.22
•

pr2_pru0 09

P8.23
•

pr2_pru0 08

P8.24
•

pr2_pru0 05

P8.25
•

pr2_pru0 04

P8.26
•

pr1_pru1 17

P8.27
•

pr2_pru1 17

P8.28
•

pr2_pru0 17

P8.29
•

pr2_pru0 18

P8.30
•

pr2_pru0 19

P8.31
•

pr2_pru0 11

P8.32
•

pr2_pru1 00

P8.33
•

pr2_pru0 10

P8.34
•

pr2_pru0 08

P8.35
•

pr2_pru0 09

continues on next page

2.7. Capes 317

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.96 – continued from previous page
Header Pin Black AI
P8.36

•
pr2_pru0 07

P8.37
•

pr2_pru0 05

P8.38
•

pr2_pru0 06

P8.39
•

pr2_pru0 03

P8.40
•

pr2_pru0 04

P8.41
•

pr2_pru0 01

P8.42
•

pr2_pru0 02

P8.43
•

pr2_pru1 20

P8.44
•

pr2_pru0 00

P8.45
•

pr2_pru1 18

P8.46
•

pr2_pru1 19

P9.11
•

pr2_pru0 14

P9.13
•

pr2_pru0 15

P9.14
•

pr1_pru1 14

P9.15
•

pr1_pru0 5

P9.16
•

pr1_pru1 15

P9.17
•

pr2_pru1 09

P9.18
•

pr2_pru1 08

continues on next page

318 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

Table 2.96 – continued from previous page
Header Pin Black AI
P9.19

•
pr1_pru1 02

P9.20
•

pr1_pru1 01

P9.24 pr1_pru0 16 (In)
•

P9.25 pr1_pru0 07 pr2_pru1 05
P9.26 pr1_pru1 16 (In) pr1_pru0 17
P9.27 pr1_pru0 05 pr1_pru1 11
P9.28 pr1_pru0 03 pr2_pru1 13
P9.29 pr1_pru0 01 pr2_pru1 11
P9.30 pr1_pru0 02 pr2_pru1 12
P9.31 pr1_pru0 00 pr2_pru1 10
P9.41 pr1_pru0 06 pr1_pru1 03
P9.42 pr1_pru0 04 pr1_pru1 10

GPIO TODO
 For each of the pins with a GPIO, there should be a symlink that comes from the names *

Methodology

The methodology for applied in the kernel and software images to expose the software interfaces is to be
documented here. The most fundamental elements are the device tree entries, including overlays, and udev
rules.

10-of-symlink.rules

#From: https://github.com/mvduin/py-uio/blob/master/etc/udev/rules.d/10-of-
↪→symlink.rules
allow declaring a symlink for a device in DT
ATTR{device/of_node/symlink}!=””, \

ENV{OF_SYMLINK}=”%s{device/of_node/symlink}”

ENV{OF_SYMLINK}!=””, ENV{DEVNAME}!=””, \
SYMLINK+=”%E{OF_SYMLINK}”, \
TAG+=”systemd”, ENV{SYSTEMD_ALIAS}+=”/dev/%E{OF_SYMLINK}”

TBD

Also courtesy of mvduin
create symlinks for gpios exported to sysfs by DT
SUBSYSTEM==”gpio”, ACTION==”add”, TEST==”value”, ATTR{label}!=”sysfs”, \

RUN+=”/bin/mkdir -p /dev/bone/gpio”, \
RUN+=”/bin/ln -sT '/sys/class/gpio/%k' /dev/bone/gpio/%s

↪→{label}”

Verification TODO: The steps used to verify all of these configurations is to be documented here. It will
serve to document what has been tested, how to reproduce the configurations, and how to verify each major
triannual release. All faults will be documented in the issue tracker.

2.7. Capes 319

BeagleBoard Docs, Release 1.0.20230308-wip

References

• Device Tree: Supporting Similar Boards - The BeagleBone Example

• Google drive with summary of expansion signals on various BeagleBoard.org designs

• Beagleboard:Cape Expansion Headers

2.7.2 BeagleBoard.org BeagleBone Relay Cape

Relay Cape, as the name suggests, is a simple Cape with relays on it. It contains four relays, each of which can
be operated independently from the BeagleBone.

• Order page

• Schematic

Note: The following describes how to use the device tree overlay under development. The description may
not be suitable for those using older firmware.

Installation

No special configuration is required. When you plug Cape into your BeagleBoard, it is automatically recognized
by the Cape Universal function.

You can check to see if the Relay Cape is recognized with the following command.

ls /proc/device-tree/chosen/overlay

A list of currently loaded device tree overlays is displayed here. If you see BBORG_RELAY-00A2.kernel in this
list, it has been loaded correctly.

If it is not loaded correctly, you can also load it directly by adding the following to the U-Boot options (which
can be reflected by changing /boot/uEnv.txt).

320 Chapter 2. Boards

https://beagleboard.org/blog/2022-03-31-device-tree-supporting-similar-boards-the-beaglebone-example
https://docs.google.com/spreadsheets/d/1fE-AsDZvJ-bBwzNBj1_sPDrutvEvsmARqFwvbw_HkrE/edit?usp=sharing
https://elinux.org/Beagleboard:Cape_Expansion_Headers
https://beagleboard.org/capes#relay
https://git.beagleboard.org/beagleboard/capes/-/tree/master/beaglebone/Relay

BeagleBoard Docs, Release 1.0.20230308-wip

uboot_overlay_addr0=BBORG_RELAY-00A2.dtbo

Usage

ls /sys/class/leds

The directory “relay1”, for instance, exists in the following directory. The LEDs can be controlled by modifying
the files in its directory.

echo 1 > relay1/brightness

This allows you to adjust the brightness; entering 1 for brightness turns it ON, and entering 0 for OFF.

The four relays can be changed individually by changing the number after “relay” in /sys/class/leds/relay.

Code to Get Started

Currently, using sysfs in .c files, libgpiod-dev/gpiod in .c files, and python3 files with the Relay Cape work well!

• For instance, a kernel that I found to work is kernel: 5.10.140-ti-r52

• Another idea, an image I found that works is BeagleBoard.org Debian Bullseye Minimal Image 2022-11-01

There are newer images and kernels if you want to update and there are older ones in case you would like to
go back in time to use older kernels and images for the Relay Cape. Please remember that older firmware will
work differently on the BeagleBone Black or other related am335x SBC.

C Source with File Descriptors

You can name this file GPIO.c and use gcc to handle compiling the source into a binary like so:

gcc GPIO.c -o GPIO

/*

This is an example of programming GPIO from C using the sysfs interface on
a BeagleBone Black/BeagleBone Black Wireless or other am335x board with the␣
↪→Relay Cape.

Use the Relay Cape attached to the BeagleBone Black for a change in seconds␣
↪→and then exit with CTRL-C.

The original source can be found here by Mr. Tranter: https://github.com/
↪→tranter/blogs/blob/master/gpio/part5/demo1.c

Jeff Tranter <jtranter@ics.com>

and...Seth. I changed the source a bit to fit the BeagleBone Black and Relay␣
↪→Cape while using sysfs.

*/

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

(continues on next page)

2.7. Capes 321

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

int main()
{

// Export the desired pin by writing to /sys/class/leds/relay1/brightness

int fd = open(”/sys/class/leds/relay1/brightness”, O_WRONLY);
if (fd == -1) {

perror(”Unable to open /sys/class/leds/relay1/brightness”);
exit(1);

}

fd = open(”/sys/class/leds/relay1/brightness”, O_WRONLY);
if (fd == -1) {

perror(”Unable to open /sys/class/leds/relay1/brightness”);
exit(1);

}

// Toggle LED 50 ms on, 50ms off, 100 times (10 seconds)

for (int i = 0; i < 100; i++) {
if (write(fd, ”1”, 1) != 1) {

perror(”Error writing to /sys/class/leds/relay1/brightness”);
exit(1);

}
usleep(50000);

if (write(fd, ”0”, 1) != 1) {
perror(”Error writing to /sys/class/leds/relay1/brightness”);
exit(1);

}
usleep(50000);

}

close(fd);

// And exit
return 0;

}

C Source with LibGPIOd-dev and File Descriptors

Also…if you are looking to dive into the new interface, libgpiod-dev/gpiod.h, here is another form of source that
can toggle the same GPIO listed from the file descriptor.

One thing to note: sudo apt install cmake

1. mkdir GPIOd && cd GPIOd

2. nano LibGPIO.c

3. add the below source into the file LibGPIO.c

/*
Simple gpiod example of toggling a LED connected to a gpio line from
the BeagleBone Black Wireless and Relay Cape.
Exits with or without CTRL-C.
*/

// This source can be found here: https://github.com/tranter/blogs/blob/
↪→master/gpio/part9/example.c

(continues on next page)

322 Chapter 2. Boards

BeagleBoard Docs, Release 1.0.20230308-wip

(continued from previous page)

// It has been changed by me, Seth, to handle the RelayCape and BBBW Linux␣
↪→based SiP SBC.

// kernel: 5.10.140-ti-r52
// image : BeagleBoard.org Debian Bullseye Minimal Image 2022-11-01

// type gpioinfo and look for this line: line 20: ”P9_41B” ”relay1” output␣
↪→active-high [used]
// That line shows us the info. we need to make an educated decision on what␣
↪→fd we will use, i.e. relay1.
// We will also need to locate which chipname is being utilized. For␣
↪→instance: gpiochip0 - 32 lines:

// #include <linux/gpio.h>
#include <gpiod.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char **argv)
{

const char *chipname = ”gpiochip0”;
struct gpiod_chip *chip;
struct gpiod_line *lineLED;

int i, ret;

// Open GPIO chip
chip = gpiod_chip_open_by_name(chipname);
if (!chip) {

perror(”Open chip failed\n”);
return 1;

}

// Open GPIO lines
lineLED = gpiod_chip_get_line(chip, 20);
if (!lineLED) {

perror(”Get line failed\n”);
return 1;

}

// Open LED lines for output
ret = gpiod_line_request_output(lineLED, ”relay1”, 0);
if (ret < 0) {

perror(”Request line as output failed\n”);
return 1;

}

// Blink a LED
i = 0;
while (true) {

ret = gpiod_line_set_value(lineLED, (i & 1) != 0);
if (ret < 0) {

perror(”Set line output failed\n”);
return 1;

}
usleep(1000000);
i++;

}

// Release lines and chip
gpiod_line_release(lineLED);

(continues on next page)

2.7. Capes 323

